聚类数的黄金分割:sklearn中分层特征聚类数优化策略

聚类数的黄金分割:sklearn中分层特征聚类数优化策略

在机器学习中,确定聚类数(即簇的数量)是一个关键问题,尤其是在处理具有层次结构的数据时。选择合适的聚类数可以显著提高聚类效果。scikit-learn(简称sklearn)提供了多种方法来辅助我们找到最优的聚类数。本文将详细介绍如何在sklearn中对分层特征的聚类标签进行聚类数优化,并提供详细的代码示例。

1. 聚类数优化的重要性

聚类数直接影响聚类的质量和解释性。

  • 过少的聚类数可能导致簇内差异过大。
  • 过多的聚类数可能导致过拟合和簇内数据稀疏。
2. 聚类数优化方法
2.1 肘部法则(Elbow Method)

肘部法则通过观察模型复杂度与误差之间的关系来选择聚类数。

python 复制代码
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

# 生成模拟数据
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 肘部法则
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

# 绘制肘部曲线
import matplotlib.pyplot as plt
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
2.2 平均轮廓系数(Average Silhouette Score)

轮廓系数衡量聚类的凝聚度和分离度,平均轮廓系数用于评估不同聚类数的效果。

python 复制代码
from sklearn.metrics import silhouette_score

# 计算不同聚类数的平均轮廓系数
silhouette_scores = []
for n_clusters in range(2, 11):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(X)
    score = silhouette_score(X, kmeans.labels_)
    silhouette_scores.append(score)

# 选择平均轮廓系数最高的聚类数
optimal_n_clusters = silhouette_scores.index(max(silhouette_scores)) + 2
2.3 戴维森堡丁指数(Davies-Bouldin Index)

戴维森堡丁指数衡量簇间距离和簇内距离的比率,越低表示聚类效果越好。

python 复制代码
from sklearn.metrics import davies_bouldin_score

# 计算不同聚类数的戴维森堡丁指数
db_scores = []
for n_clusters in range(2, 11):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(X)
    score = davies_bouldin_score(X, kmeans.labels_)
    db_scores.append(score)

# 选择戴维森堡丁指数最低的聚类数
optimal_n_clusters = db_scores.index(min(db_scores)) + 2
3. 考虑分层特征的聚类数优化
3.1 特征转换

在优化聚类数之前,需要将分层特征转换为模型可处理的格式。

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

# 假设X是文本数据
vectorizer = CountVectorizer()
X_vectorized = vectorizer.fit_transform(X)
3.2 应用聚类数优化方法

在转换后的特征上应用聚类数优化方法。

python 复制代码
# 以肘部法则为例
wcss_vectorized = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(X_vectorized)
    wcss_vectorized.append(kmeans.inertia_)

# 绘制肘部曲线
plt.plot(range(1, 11), wcss_vectorized)
plt.title('Elbow Method on Vectorized Data')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
4. 结论

聚类数的优化是聚类分析中的一个关键步骤。通过本文的介绍,你应该对如何在sklearn中对分层特征的聚类标签进行聚类数优化有了深入的理解。记住,合理选择聚类数可以显著提高聚类效果和模型的泛化能力。

希望本文能够帮助你在聚类分析的道路上更进一步,如果你在实践中遇到任何问题,欢迎与我们交流。让我们一起探索机器学习的深度,解锁数据的无限可能。

相关推荐
天天爱吃肉82183 分钟前
交叉表格与卡方检验:新能源汽车研发测试中的分类变量关联性分析实战
人工智能·python·嵌入式硬件·机器学习·分类·数据挖掘·汽车
BHXDML8 分钟前
第二章:决策树与集成算法
算法·决策树·机器学习
永远都不秃头的程序员(互关)15 分钟前
【K-Means深度探索(四)】速度与激情:MiniBatch K-Means如何驯服海量数据
算法·机器学习·kmeans
木头程序员21 分钟前
持续学习(Continual/Lifelong Learning)综述
大数据·人工智能·深度学习·机器学习
程途拾光15821 分钟前
模型微调 vs 上下文学习的成本效益对比
人工智能·深度学习·机器学习
soldierluo9 小时前
大模型的召回率
人工智能·机器学习
冰西瓜60011 小时前
从项目入手机器学习——(三)数据预处理(下)自动编码器
人工智能·机器学习
ldccorpora12 小时前
GALE Phase 1 Chinese Broadcast News Parallel Text - Part 1数据集介绍,官网编号LDC2007T23
人工智能·深度学习·算法·机器学习·自然语言处理
Hcoco_me14 小时前
大模型面试题75:讲解一下GRPO的数据回放
人工智能·深度学习·算法·机器学习·vllm
高洁0115 小时前
AIGC技术与进展(1)
深度学习·算法·机器学习·transformer·知识图谱