聚类数的黄金分割:sklearn中分层特征聚类数优化策略

聚类数的黄金分割:sklearn中分层特征聚类数优化策略

在机器学习中,确定聚类数(即簇的数量)是一个关键问题,尤其是在处理具有层次结构的数据时。选择合适的聚类数可以显著提高聚类效果。scikit-learn(简称sklearn)提供了多种方法来辅助我们找到最优的聚类数。本文将详细介绍如何在sklearn中对分层特征的聚类标签进行聚类数优化,并提供详细的代码示例。

1. 聚类数优化的重要性

聚类数直接影响聚类的质量和解释性。

  • 过少的聚类数可能导致簇内差异过大。
  • 过多的聚类数可能导致过拟合和簇内数据稀疏。
2. 聚类数优化方法
2.1 肘部法则(Elbow Method)

肘部法则通过观察模型复杂度与误差之间的关系来选择聚类数。

python 复制代码
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs

# 生成模拟数据
X, _ = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 肘部法则
wcss = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)

# 绘制肘部曲线
import matplotlib.pyplot as plt
plt.plot(range(1, 11), wcss)
plt.title('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
2.2 平均轮廓系数(Average Silhouette Score)

轮廓系数衡量聚类的凝聚度和分离度,平均轮廓系数用于评估不同聚类数的效果。

python 复制代码
from sklearn.metrics import silhouette_score

# 计算不同聚类数的平均轮廓系数
silhouette_scores = []
for n_clusters in range(2, 11):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(X)
    score = silhouette_score(X, kmeans.labels_)
    silhouette_scores.append(score)

# 选择平均轮廓系数最高的聚类数
optimal_n_clusters = silhouette_scores.index(max(silhouette_scores)) + 2
2.3 戴维森堡丁指数(Davies-Bouldin Index)

戴维森堡丁指数衡量簇间距离和簇内距离的比率,越低表示聚类效果越好。

python 复制代码
from sklearn.metrics import davies_bouldin_score

# 计算不同聚类数的戴维森堡丁指数
db_scores = []
for n_clusters in range(2, 11):
    kmeans = KMeans(n_clusters=n_clusters)
    kmeans.fit(X)
    score = davies_bouldin_score(X, kmeans.labels_)
    db_scores.append(score)

# 选择戴维森堡丁指数最低的聚类数
optimal_n_clusters = db_scores.index(min(db_scores)) + 2
3. 考虑分层特征的聚类数优化
3.1 特征转换

在优化聚类数之前,需要将分层特征转换为模型可处理的格式。

python 复制代码
from sklearn.feature_extraction.text import CountVectorizer

# 假设X是文本数据
vectorizer = CountVectorizer()
X_vectorized = vectorizer.fit_transform(X)
3.2 应用聚类数优化方法

在转换后的特征上应用聚类数优化方法。

python 复制代码
# 以肘部法则为例
wcss_vectorized = []
for i in range(1, 11):
    kmeans = KMeans(n_clusters=i, init='k-means++', max_iter=300, n_init=10, random_state=0)
    kmeans.fit(X_vectorized)
    wcss_vectorized.append(kmeans.inertia_)

# 绘制肘部曲线
plt.plot(range(1, 11), wcss_vectorized)
plt.title('Elbow Method on Vectorized Data')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
4. 结论

聚类数的优化是聚类分析中的一个关键步骤。通过本文的介绍,你应该对如何在sklearn中对分层特征的聚类标签进行聚类数优化有了深入的理解。记住,合理选择聚类数可以显著提高聚类效果和模型的泛化能力。

希望本文能够帮助你在聚类分析的道路上更进一步,如果你在实践中遇到任何问题,欢迎与我们交流。让我们一起探索机器学习的深度,解锁数据的无限可能。

相关推荐
~kiss~2 小时前
K-means损失函数-收敛证明
算法·机器学习·kmeans
生物小卡拉4 小时前
R脚本--表达矩阵与特征矩阵相关性分析
笔记·学习·机器学习
伏小白白白4 小时前
【论文精度-1】 组合优化中的机器学习:方法论之旅(Yoshua Bengio, 2021)
人工智能·机器学习·组合优化
春末的南方城市5 小时前
开放指令编辑创新突破!小米开源 Lego-Edit 登顶 SOTA:用强化学习为 MLLM 编辑开辟全新赛道!
人工智能·深度学习·机器学习·计算机视觉·aigc
Macre Aegir Thrym6 小时前
MINIST——SVM
算法·机器学习·支持向量机
PKNLP6 小时前
聚类之KMeans
机器学习·kmeans·聚类
C嘎嘎嵌入式开发7 小时前
(二) 机器学习之卷积神经网络
人工智能·机器学习·cnn
递归不收敛8 小时前
吴恩达机器学习课程(PyTorch 适配)学习笔记:3.4 强化学习
pytorch·学习·机器学习
StarPrayers.8 小时前
卷积层(Convolutional Layer)学习笔记
人工智能·笔记·深度学习·学习·机器学习
lisw059 小时前
AIoT(人工智能物联网):融合范式下的技术演进、系统架构与产业变革
大数据·人工智能·物联网·机器学习·软件工程