深度学习的矩阵计算

切片slice

在NumPy中,切片(slicing)是一种选择数组元素子集的方法。切片操作基于索引,但允许你指定一个范围的索引,而不是单个索引。这对于处理多维数组(NumPy中的ndarray对象)特别有用。

一维数组切片

假设你有一个一维NumPy数组arr,你可以使用冒号:来指定切片的开始和结束索引(切片是左闭右开的,即包括开始索引但不包括结束索引)。

python 复制代码
import numpy as np  
  
arr = np.array([1, 2, 3, 4, 5])  
print(arr[1:4])  # 输出: [2 3 4]

在这个例子中,arr[1:4]选择了从索引1开始到索引4(不包括索引4)的元素。

多维数组切片

对于多维数组,你可以在每个维度上分别指定切片。

python 复制代码
arr_2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])  
  
# 选择第二行的所有元素  
print(arr_2d[1, :])  # 输出: [4 5 6]  
  
# 选择所有行的前两列  
print(arr_2d[:, :2])  # 输出:  
# [[1 2]  
#  [4 5]  
#  [7 8]]  
  
# 选择第一行和第二行的前两列  
print(arr_2d[0:2, :2])  # 输出:  
# [[1 2]  
#  [4 5]]

使用省略号(...

在NumPy中,省略号(...)用于表示选择所有前面的维度,这在处理多维数组时非常有用,特别是当你想要对数组的一部分进行切片,但保留前面的维度不变时。

然而,需要注意的是,在NumPy中直接使用...进行切片的情况相对较少,因为它主要用于函数和方法的参数中,以指示"所有前面的维度"。但在某些情况下,你可以结合使用索引和省略号来实现特定的切片操作。不过,对于简单的切片任务,直接使用索引和冒号:就足够了。

示例:省略号的使用

假设你有一个三维数组,并想要选择所有第一维和第二维的元素,但只选择第三维的特定切片。

python 复制代码
import torch

a = torch.Tensor([[
    [1, 2, 3, 4, 67],
    [4, 5, 6, 7, 45],
    [7, 8, 9, 10, 56]
], [
    [11, 2, 3, 4, 47],
    [41, 5, 6, 7, 46],
    [71, 8, 9, 10, 36]
]])
print(a.shape)  # torch.Size([2, 3, 5])
c = a[..., 4]
print(c, c.shape)
# tensor([[67., 45., 56.],
#         [47., 46., 36.]]) torch.Size([2, 3])
d = a[1, ...]
print(d, d.shape)
# tensor([[11.,  2.,  3.,  4., 47.],
#         [41.,  5.,  6.,  7., 46.],
#         [71.,  8.,  9., 10., 36.]]) torch.Size([3, 5])

c = a[..., 4] 表示保留前面所有维度,最后一个维度取第5个元素

d = a[1, ...] 表示第一个维度取第二个元素,保留后面的所有维度

双索引(高级索引)

在 NumPy 中,使用双索引(或称为高级索引)probs[[0,1],[0,2]] 的方式会从二维数组 probs 中选择特定的元素。具体来说,这种索引方式会按照第一个索引列表 [0,1] 中的索引来选择行,同时按照第二个索引列表 [0,2] 中的索引来选择列。

假设 probs 是如下定义的二维数组:

python 复制代码
import numpy as np  
  
probs = np.array([[0.6590012, 0.242433, 0.0985659],  
                  [0.32278368, 0.14503606, 0.5321803]])

那么,probs[[0,1],[0,2]] 的结果将会是:

  • 从第一行(索引为 0)选择第一列(索引为 0)的元素,即 0.6590012
  • 从第二行(索引为 1)选择第三列(索引为 2)的元素,即 0.5321803

因此,probs[[0,1],[0,2]] 的输出是:

0.6590012 0.5321803

这是一个一维数组,包含了按照指定索引从 probs 中选择的两个元素。

相关推荐
碣石潇湘无限路23 分钟前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
看到我,请让我去学习34 分钟前
OpenCV开发-初始概念
人工智能·opencv·计算机视觉
汀沿河34 分钟前
8.1 prefix Tunning与Prompt Tunning模型微调方法
linux·运维·服务器·人工智能
陈敬雷-充电了么-CEO兼CTO43 分钟前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
学术 学术 Fun1 小时前
✨ OpenAudio S1:影视级文本转语音与语音克隆Mac整合包
人工智能·语音识别
风铃喵游2 小时前
让大模型调用MCP服务变得超级简单
前端·人工智能
旷世奇才李先生2 小时前
Pillow 安装使用教程
深度学习·microsoft·pillow
booooooty2 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
PyAIExplorer2 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标2 小时前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒