快速识别音频文件转成文字

一、SenseVoice概述

阿里云通义千问开源了两款语音基座模型 SenseVoice(用于语音识别)和 CosyVoice(用于语音生成)。

SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测,有以下特点:

  • 多语言识别 :采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型

  • 富文本识别 :具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果;支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测

  • 高效推理 : SenseVoice-Small 模型采用非自回归端到端框架,推理延迟极低,10s 音频推理仅耗时 70ms,15 倍优于 Whisper-Large

  • 微调定制:具备便捷的微调脚本与策略,方便用户根据业务场景修复长尾样本问题

  • 服务部署:具有完整的服务部署链路,支持多并发请求,支持的客户端语言有 python、c++、html、java 与 c#等

体验地址:魔搭社区

二、本地测试

1、项目源码克隆

复制代码
git clone https://gitee.com/zhyqieqie/SenseVoice.git

2、安装依赖

复制代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

3、测试

vi test.py

test.py内容(加载线上的一个音频文件并且自动解析出文件的文字):

复制代码
from model import SenseVoiceSmall

model_dir = "iic/SenseVoiceSmall"
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir)


res = m.inference(
    data_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
    language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
    use_itn=False,
    **kwargs,
)

print(res)

python test.py

初次运行的时候,会自动拉取模型文件,下一次运行就会直接加载本地模型文件。

相关推荐
强哥之神17 分钟前
英伟达发布 Llama Nemotron Nano 4B:专为边缘 AI 和科研任务优化的高效开源推理模型
人工智能·深度学习·语言模型·架构·llm·transformer·边缘计算
Green1Leaves20 分钟前
pytorch学习-9.多分类问题
人工智能·pytorch·学习
kyle~1 小时前
计算机视觉---RealSense深度相机技术
人工智能·数码相机·计算机视觉·机器人·嵌入式·ros·传感器
碣石潇湘无限路1 小时前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
看到我,请让我去学习2 小时前
OpenCV开发-初始概念
人工智能·opencv·计算机视觉
汀沿河2 小时前
8.1 prefix Tunning与Prompt Tunning模型微调方法
linux·运维·服务器·人工智能
陈敬雷-充电了么-CEO兼CTO2 小时前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
学术 学术 Fun2 小时前
✨ OpenAudio S1:影视级文本转语音与语音克隆Mac整合包
人工智能·语音识别
风铃喵游3 小时前
让大模型调用MCP服务变得超级简单
前端·人工智能
booooooty3 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba