快速识别音频文件转成文字

一、SenseVoice概述

阿里云通义千问开源了两款语音基座模型 SenseVoice(用于语音识别)和 CosyVoice(用于语音生成)。

SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测,有以下特点:

  • 多语言识别 :采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型

  • 富文本识别 :具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果;支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测

  • 高效推理 : SenseVoice-Small 模型采用非自回归端到端框架,推理延迟极低,10s 音频推理仅耗时 70ms,15 倍优于 Whisper-Large

  • 微调定制:具备便捷的微调脚本与策略,方便用户根据业务场景修复长尾样本问题

  • 服务部署:具有完整的服务部署链路,支持多并发请求,支持的客户端语言有 python、c++、html、java 与 c#等

体验地址:魔搭社区

二、本地测试

1、项目源码克隆

复制代码
git clone https://gitee.com/zhyqieqie/SenseVoice.git

2、安装依赖

复制代码
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

3、测试

vi test.py

test.py内容(加载线上的一个音频文件并且自动解析出文件的文字):

复制代码
from model import SenseVoiceSmall

model_dir = "iic/SenseVoiceSmall"
m, kwargs = SenseVoiceSmall.from_pretrained(model=model_dir)


res = m.inference(
    data_in="https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_zh.wav",
    language="auto", # "zn", "en", "yue", "ja", "ko", "nospeech"
    use_itn=False,
    **kwargs,
)

print(res)

python test.py

初次运行的时候,会自动拉取模型文件,下一次运行就会直接加载本地模型文件。

相关推荐
szcsun530 分钟前
机器学习(五)--决策树
人工智能·决策树·机器学习
scott19851230 分钟前
transformer中的位置编码:从绝对位置编码到旋转位置编码
人工智能·深度学习·transformer
人工智能AI技术30 分钟前
自注意力机制:AI的“超能力放大镜”
人工智能
weixin_4684668532 分钟前
目标识别精度指标与IoU及置信度关系辨析
人工智能·深度学习·算法·yolo·图像识别·目标识别·调参
Hi2024021733 分钟前
在Docker容器中安全运行OpenClaw:无需虚拟机,体验AI助手
人工智能·安全·docker·openclaw
&星痕&33 分钟前
人工智能:深度学习:1.pytorch概述(2)
人工智能·深度学习
eyun_1850034 分钟前
把健康小屋搬进单位 让职工暖心 让履职安心
大数据·人工智能·经验分享
草莓熊Lotso34 分钟前
Qt 主窗口核心组件实战:菜单栏、工具栏、状态栏、浮动窗口全攻略
运维·开发语言·人工智能·python·qt·ui
愚公搬代码34 分钟前
【愚公系列】《AI短视频创作一本通》019-AI语音及音乐的创作(AI短视频语音创作实例)
人工智能·音视频
wukangjupingbb35 分钟前
AI在靶点识别(Target Identification)中的关键作用与开源工具生态
人工智能·开源