ROC曲线的一点理解

1 背景知识

真阳率(TPR)和假阳率(FPR)

  • 真阳率(TPR) :又称召回率(Recall),计算公式为 ,表示实际为正的样本中被正确分类为正的比例。
  • 假阳率(FPR) :计算公式为,表示实际为负的样本中被错误分类为正的比例。

2 ROC曲线作用

ROC曲线(Receiver Operating Characteristic Curve),即受试者工作特征曲线 ,是一种用于评估二分类模型性能的工具。

3 分类器分类阈值

  • 分类器通常会输出一个概率分数或置信度分数,这个分数表示样本属于某一类别的可能性。
  • 通过设置不同的阈值,将概率分数转换为二元分类结果。例如,如果阈值设为0.5,概率分数大于或等于0.5的样本被分类为正类,低于0.5的样本被分类为负类。

4 绘制ROC曲线

  • 通过改变分类阈值,从0到1,对每一个阈值计算对应的TPR和FPR。则每个阈值在ROC曲线中对应一个点。
  • 在以FPR为横轴、TPR为纵轴的坐标系中绘制出这些点,连接这些点就形成了ROC曲线。

引用自深入解析ROC曲线及其应用_ruc曲线 csdn-CSDN博客

ROC曲线通过展示真阳性率 (TPR)与假阳性率(FPR)之间的权衡关系,为模型的性能提供直观的图形表示。

5 解析ROC曲线

曲线形状

  • 理想的ROC曲线在左上角(TPR接近1,FPR接近0)弯曲,表示高真阳率和低假阳率。 所以曲线越接近左上角,分类器的性能越好。
  • 对角线(从点(0,0)到(1,1))表示随机猜测的分类器,其AUC为0.5。这意味着分类器的性能和随机猜测没有区别。

起点(0,0)解释:

  • 此时是阈值设置得极高的情况,TPR和FPR都是0,所有样本都被分类为负类。 (简单理解极端情况就是:阈值为1 ,概率得分只有>1才能分为正类,低于1的样本得分被分为负类)

终点(1,1)解释:

此时,TPR和FPR都是1。当阈值设置得极低时,所有样本都被分类为正类。(极端情况阈值=0,概率得分>0被分为正类,低于0的样本得分被分为负类,显然没有负类)

1表示所有正类样本都分成正类

1表示所有负类样本都分成正类

对角线上任意一点(x,y)

  • 假设某个阈值下,假阳率(FPR)为x,真阳率(TPR)为y。
  • 对于随机分类器,FPR和TPR会随着阈值的变化线性变化,即在对角线上移动。

eg: 假设有一个数据集,其中正类和负类样本各占50%。随机分类器对这些样本进行分类,表现如下:

  • 对于正类样本,有50%的概率被随机分类为正类,50%的概率被随机分类为负类。
  • 对于负类样本,也有50%的概率被随机分类为正类,50%的概率被随机分类为负类。

随机分类器的表现可以总结为:

  • FPR = 0.5
  • TPR = 0.5

这个结果对应于对角线上的点(0.5, 0.5)。如果我们绘制随机分类器的ROC曲线,它会从(0,0)开始,经过(0.5, 0.5),最终到达(1,1),形成一条对角线。

曲线下面积(AUC)

  • AUC(Area Under the Curve)是衡量分类器整体性能的指标,取值范围在0到1之间。
  • AUC越接近1,分类器性能越好。AUC为0.5表示分类器没有区分能力,与随机猜测相同。
相关推荐
CDA数据分析师干货分享17 小时前
【干货】CDA一级知识点拆解1:《CDA一级商业数据分析》第1章 数据分析思维
数据库·人工智能·数据分析·cda证书·cda数据分析师
梦梦代码精17 小时前
开源、免费、可商用:BuildingAI一站式体验报告
开发语言·前端·数据结构·人工智能·后端·开源·知识图谱
Dingdangcat8617 小时前
YOLOX-L在钢丝绳损伤检测中的应用:基于300轮训练与COCO数据集的智能分类系统详解
人工智能·分类·数据挖掘
AI营销快线17 小时前
2026 GEO服务商评测:原圈科技如何定义AI营销终局?
人工智能
天翼云开发者社区17 小时前
天翼云全栈赋能OpenClaw,打造会干活的专属AI!
人工智能·智能体·openclaw
百***787517 小时前
Clawdbot 技术实战:基于一步 API 快速接入,打造本地化 AI 自动化助手
运维·人工智能·自动化
阿正的梦工坊18 小时前
Megatron中--train-iters和--max_epochs两个参数介绍
人工智能·深度学习·自然语言处理
人工智能AI技术18 小时前
【C#程序员入门AI】向量数据库入门:C#集成Chroma/Pinecone,实现AI知识库检索(RAG基础)
人工智能·c#
jl486382118 小时前
打造医疗设备的“可靠视窗”:医用控温仪专用屏从抗菌设计到EMC兼容的全链路解析
大数据·运维·人工智能·物联网·人机交互
kiro_102318 小时前
BGRtoNV12与NV12toBGR互转函数
人工智能·opencv·计算机视觉