实现一个栈,该栈带有出栈(pop)、入栈(push)、取最小元素(getMin)3个方法。要保证这3个方法的时间复杂度都是O(1)

问题

实现一个栈,该栈带有出栈(pop)、入栈(push)、取最小元素(getMin)3个方法。要保证这3个方法的时间复杂度都是O(1)。

解释

为了实现一个栈,同时满足 poppushgetMin 操作的时间复杂度均为 O(1),我们需要在栈中存储元素的同时,额外维护一个最小值的信息。一个常见的方法是使用两个栈,一个用于存储实际元素(我们称之为 dataStack),另一个用于存储对应位置的最小值(我们称之为 minStack)。当 dataStack 进行 pushpop 操作时,minStack 也会进行相应的操作以保持同步,从而确保 getMin 操作的时间复杂度为 O(1)。

代码

java 复制代码
import java.util.Stack;  
  
public class MinStack {  
    // 用于存储实际数据的栈  
    private Stack<Integer> dataStack;  
    // 用于存储对应位置最小值的栈  
    private Stack<Integer> minStack;  
  
    /** initialize your data structure here. */  
    public MinStack() {  
        dataStack = new Stack<>();  
        minStack = new Stack<>();  
    }  
  
    public void push(int x) {  
        dataStack.push(x);  
        // 如果minStack为空,或者x小于等于minStack的栈顶元素,则将x也压入minStack  
        if (minStack.isEmpty() || x <= minStack.peek()) {  
            minStack.push(x);  
        }  
    }  
  
    public void pop() {  
        // 如果dataStack弹出的元素等于minStack的栈顶元素,则minStack也需要弹出  
        if (!dataStack.isEmpty() && dataStack.peek().equals(minStack.peek())) {  
            minStack.pop();  
        }  
        dataStack.pop();  
    }  
  
    public int top() {  
        // 栈不为空时,返回栈顶元素  
        if (!dataStack.isEmpty()) {  
            return dataStack.peek();  
        }  
        throw new RuntimeException("Stack is empty");  
    }  
  
    public int getMin() {  
        // 栈不为空时,返回最小值栈的栈顶元素  
        if (!minStack.isEmpty()) {  
            return minStack.peek();  
        }  
        throw new RuntimeException("Stack is empty");  
    }  
}  
  
// 示例用法  
public class Main {  
    public static void main(String[] args) {  
        MinStack minStack = new MinStack();  
        minStack.push(-2);  
        minStack.push(0);  
        minStack.push(-3);  
        System.out.println(minStack.getMin());   // 返回 -3  
        minStack.pop();  
        System.out.println(minStack.top());     // 返回 0  
        System.out.println(minStack.getMin());   // 返回 -2  
    }  
}

这段代码定义了一个 MinStack 类,它使用两个栈来分别维护数据和对应位置的最小值。push 操作会同时向两个栈中添加元素,而 pop 操作会检查两个栈的栈顶元素是否相同(即被移除的元素是否是当前最小值),如果是,则同时从两个栈中移除。通过这种方式,我们可以确保 getMin 操作的时间复杂度为 O(1)。

相关推荐
自由鬼21 分钟前
正向代理服务器Squid:功能、架构、部署与应用深度解析
java·运维·服务器·程序人生·安全·架构·代理
程序员Xu29 分钟前
【OD机试题解法笔记】连续出牌数量
笔记·算法·深度优先
CoovallyAIHub42 分钟前
单目深度估计重大突破:无需标签,精度超越 SOTA!西湖大学团队提出多教师蒸馏新方案
深度学习·算法·计算机视觉
CoovallyAIHub44 分钟前
从FCOS3D到PGD:看深度估计如何快速搭建你的3D检测项目
深度学习·算法·计算机视觉
fouryears_234171 小时前
深入拆解Spring核心思想之一:IoC
java·后端·spring
偷偷的卷1 小时前
【算法笔记 day three】滑动窗口(其他类型)
数据结构·笔记·python·学习·算法·leetcode
codervibe1 小时前
使用 Spring Boot + JWT 实现多角色登录认证(附完整流程图)
java·后端
坚持学习永不言弃1 小时前
Ehcache、Caffeine、Memcached和Redis缓存
java
北京地铁1号线1 小时前
Zero-Shot(零样本学习),One-Shot(单样本学习),Few-Shot(少样本学习)概述
人工智能·算法·大模型
阿劲1 小时前
从业务卡顿到数据库连接池耗尽:Spring Boot项目HikariCP超时问题实战排查
java·后端·面试