深度学习:转置卷积

什么是转置卷积(Transposed Convolution)

转置卷积,又称反卷积(Deconvolution)或上采样卷积(Upsampling Convolution),是一种卷积操作,通常用于生成式模型或图像处理任务中,以增加特征图的空间分辨率。转置卷积的目的是将低分辨率的特征图还原到较高分辨率,即进行空间上采样。

正常卷积操作回顾

在标准卷积操作中,卷积核在输入特征图上滑动,计算局部区域的加权和,从而生成输出特征图。假设我们有以下参数:

  • 输入特征图大小: ( H × W ) (H \times W ) (H×W)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )
输出特征图的大小为:

H o u t = H − K + 2 P S + 1 \] \[ H{out} = \\frac{H - K + 2P}{S} + 1 \] \[Hout=SH−K+2P+1

W o u t = W − K + 2 P S + 1 \] \[ W{out} = \\frac{W - K + 2P}{S} + 1 \] \[Wout=SW−K+2P+1

转置卷积的基本原理

转置卷积的操作可以被视为卷积的逆过程。其目的是将小的输入特征图扩展为更大的输出特征图。转置卷积通过插入零元素并使用卷积核计算来实现这一点。

转置卷积的计算步骤:

  • 插入零元素(Zero-Insertions):

    在输入特征图的元素之间插入零元素,增加特征图的尺寸。例如,假设步幅为 ( S ),在每个元素之间插入 ( S-1 ) 个零。

  • 填充(Padding):

    适当填充输入特征图,确保输出特征图具有预期的大小。通常填充策略与卷积核的大小和步幅相关。

  • 卷积操作:

    使用标准卷积操作在填充后的特征图上应用卷积核,生成输出特征图。

假设我们有以下参数:
  • 输入特征图大小: ( H i n × W i n ) ( H{in} \times W{in} ) (Hin×Win)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )

输出特征图的大小为:

H o u t = ( H i n − 1 ) × S − 2 P + K \] \[ H{out} = (H{in} - 1) \\times S - 2P + K \] \[Hout=(Hin−1)×S−2P+K

W o u t = ( W i n − 1 ) × S − 2 P + K \] \[ W{out} = (W{in} - 1) \\times S - 2P + K \] \[Wout=(Win−1)×S−2P+K

应用场景

转置卷积广泛应用于以下场景:

  • 生成对抗网络(GANs):在生成器中使用转置卷积将低维噪声向量转换为高维图像。
  • 图像超分辨率:从低分辨率图像重建高分辨率图像。
  • 语义分割:将特征图还原为输入图像的尺寸以生成像素级别的分类图。
通过转置卷积,我们可以有效地对图像进行空间上采样,实现不同的图像生成和重建任务。
相关推荐
m0_751336391 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk4 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程4 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
有Li4 小时前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
郭庆汝4 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion6 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周6 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享7 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜8 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿8 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程