深度学习:转置卷积

什么是转置卷积(Transposed Convolution)

转置卷积,又称反卷积(Deconvolution)或上采样卷积(Upsampling Convolution),是一种卷积操作,通常用于生成式模型或图像处理任务中,以增加特征图的空间分辨率。转置卷积的目的是将低分辨率的特征图还原到较高分辨率,即进行空间上采样。

正常卷积操作回顾

在标准卷积操作中,卷积核在输入特征图上滑动,计算局部区域的加权和,从而生成输出特征图。假设我们有以下参数:

  • 输入特征图大小: ( H × W ) (H \times W ) (H×W)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )
输出特征图的大小为:

H o u t = H − K + 2 P S + 1 \] \[ H{out} = \\frac{H - K + 2P}{S} + 1 \] \[Hout=SH−K+2P+1

W o u t = W − K + 2 P S + 1 \] \[ W{out} = \\frac{W - K + 2P}{S} + 1 \] \[Wout=SW−K+2P+1

转置卷积的基本原理

转置卷积的操作可以被视为卷积的逆过程。其目的是将小的输入特征图扩展为更大的输出特征图。转置卷积通过插入零元素并使用卷积核计算来实现这一点。

转置卷积的计算步骤:

  • 插入零元素(Zero-Insertions):

    在输入特征图的元素之间插入零元素,增加特征图的尺寸。例如,假设步幅为 ( S ),在每个元素之间插入 ( S-1 ) 个零。

  • 填充(Padding):

    适当填充输入特征图,确保输出特征图具有预期的大小。通常填充策略与卷积核的大小和步幅相关。

  • 卷积操作:

    使用标准卷积操作在填充后的特征图上应用卷积核,生成输出特征图。

假设我们有以下参数:
  • 输入特征图大小: ( H i n × W i n ) ( H{in} \times W{in} ) (Hin×Win)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )

输出特征图的大小为:

H o u t = ( H i n − 1 ) × S − 2 P + K \] \[ H{out} = (H{in} - 1) \\times S - 2P + K \] \[Hout=(Hin−1)×S−2P+K

W o u t = ( W i n − 1 ) × S − 2 P + K \] \[ W{out} = (W{in} - 1) \\times S - 2P + K \] \[Wout=(Win−1)×S−2P+K

应用场景

转置卷积广泛应用于以下场景:

  • 生成对抗网络(GANs):在生成器中使用转置卷积将低维噪声向量转换为高维图像。
  • 图像超分辨率:从低分辨率图像重建高分辨率图像。
  • 语义分割:将特征图还原为输入图像的尺寸以生成像素级别的分类图。
通过转置卷积,我们可以有效地对图像进行空间上采样,实现不同的图像生成和重建任务。
相关推荐
AI街潜水的八角42 分钟前
图像修复:深度学习实现老照片划痕修复+老照片上色
人工智能·深度学习
HuggingFace3 小时前
Hugging Face 开源 HopeJR 机器臂!今天晚上直播带你深入技术核心
人工智能
SUPER52664 小时前
AI应用服务
人工智能
义薄云天us4 小时前
028_分布式部署架构
人工智能·分布式·架构·claude code
HuggingFace5 小时前
HF Papers 直播| AI for Science 专场
人工智能
机器视觉与AI5 小时前
半导体制造流程深度解析:外观缺陷检测的AI化路径与实践
人工智能·视觉检测·制造
批量小王子7 小时前
2025-07-15通过边缘线检测图像里的主体有没有出血
人工智能·opencv·计算机视觉
机器学习之心7 小时前
三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测
深度学习·cnn·lstm·cnn-lstm·贝叶斯优化的cnn-lstm
技术猿188702783517 小时前
实现“micro 关键字搜索全覆盖商品”并通过 API 接口提供实时数据(一个方法)
开发语言·网络·python·深度学习·测试工具
zyhomepage8 小时前
科技的成就(六十九)
开发语言·网络·人工智能·科技·内容运营