深度学习:转置卷积

什么是转置卷积(Transposed Convolution)

转置卷积,又称反卷积(Deconvolution)或上采样卷积(Upsampling Convolution),是一种卷积操作,通常用于生成式模型或图像处理任务中,以增加特征图的空间分辨率。转置卷积的目的是将低分辨率的特征图还原到较高分辨率,即进行空间上采样。

正常卷积操作回顾

在标准卷积操作中,卷积核在输入特征图上滑动,计算局部区域的加权和,从而生成输出特征图。假设我们有以下参数:

  • 输入特征图大小: ( H × W ) (H \times W ) (H×W)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )
输出特征图的大小为:

H o u t = H − K + 2 P S + 1 \] \[ H{out} = \\frac{H - K + 2P}{S} + 1 \] \[Hout=SH−K+2P+1

W o u t = W − K + 2 P S + 1 \] \[ W{out} = \\frac{W - K + 2P}{S} + 1 \] \[Wout=SW−K+2P+1

转置卷积的基本原理

转置卷积的操作可以被视为卷积的逆过程。其目的是将小的输入特征图扩展为更大的输出特征图。转置卷积通过插入零元素并使用卷积核计算来实现这一点。

转置卷积的计算步骤:

  • 插入零元素(Zero-Insertions):

    在输入特征图的元素之间插入零元素,增加特征图的尺寸。例如,假设步幅为 ( S ),在每个元素之间插入 ( S-1 ) 个零。

  • 填充(Padding):

    适当填充输入特征图,确保输出特征图具有预期的大小。通常填充策略与卷积核的大小和步幅相关。

  • 卷积操作:

    使用标准卷积操作在填充后的特征图上应用卷积核,生成输出特征图。

假设我们有以下参数:
  • 输入特征图大小: ( H i n × W i n ) ( H{in} \times W{in} ) (Hin×Win)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )

输出特征图的大小为:

H o u t = ( H i n − 1 ) × S − 2 P + K \] \[ H{out} = (H{in} - 1) \\times S - 2P + K \] \[Hout=(Hin−1)×S−2P+K

W o u t = ( W i n − 1 ) × S − 2 P + K \] \[ W{out} = (W{in} - 1) \\times S - 2P + K \] \[Wout=(Win−1)×S−2P+K

应用场景

转置卷积广泛应用于以下场景:

  • 生成对抗网络(GANs):在生成器中使用转置卷积将低维噪声向量转换为高维图像。
  • 图像超分辨率:从低分辨率图像重建高分辨率图像。
  • 语义分割:将特征图还原为输入图像的尺寸以生成像素级别的分类图。
通过转置卷积,我们可以有效地对图像进行空间上采样,实现不同的图像生成和重建任务。
相关推荐
小程故事多_80几秒前
极简即王道 下一代Agent架构Pi Agent Core设计逻辑深度解析
人工智能·架构·aigc
琅琊榜首20204 分钟前
AI+编程思维:高质量短剧脚本高效撰写实操指南
大数据·人工智能·深度学习
阿星AI工作室9 分钟前
宝藏skills!90个顶尖博客信源自动抓,AI每天帮我筛出20篇精华!
人工智能·算法
程序员猫哥_18 分钟前
无需编程的全栈开发平台如何实现前后端一体化生成?底层逻辑拆解
人工智能
EchoMind-Henry19 分钟前
Build 04 / 意图路由:拆解 classify_intent,用“规则+模型”榨干 Token 价值
人工智能
FeelTouch Labs33 分钟前
基于语义检索的知识型AI智能体(RAG范式)
人工智能
sali-tec42 分钟前
C# 基于OpenCv的视觉工作流-章25-ORB特征点
图像处理·人工智能·opencv·算法·计算机视觉
半兽先生1 小时前
告别 AI 乱写 Vue!用 vue-skills 构建前端智能编码标准
前端·vue.js·人工智能
摇滚侠1 小时前
JWT 是 token 的一种格式,我的理解对吗?
java·人工智能·intellij-idea·spring ai·springaialibaba
xixixi777772 小时前
零样本学习 (Zero-Shot Learning, ZSL)补充
人工智能·学习·安全·ai·零样本·模型训练·训练