深度学习:转置卷积

什么是转置卷积(Transposed Convolution)

转置卷积,又称反卷积(Deconvolution)或上采样卷积(Upsampling Convolution),是一种卷积操作,通常用于生成式模型或图像处理任务中,以增加特征图的空间分辨率。转置卷积的目的是将低分辨率的特征图还原到较高分辨率,即进行空间上采样。

正常卷积操作回顾

在标准卷积操作中,卷积核在输入特征图上滑动,计算局部区域的加权和,从而生成输出特征图。假设我们有以下参数:

  • 输入特征图大小: ( H × W ) (H \times W ) (H×W)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )
输出特征图的大小为:

H o u t = H − K + 2 P S + 1 \] \[ H{out} = \\frac{H - K + 2P}{S} + 1 \] \[Hout=SH−K+2P+1

W o u t = W − K + 2 P S + 1 \] \[ W{out} = \\frac{W - K + 2P}{S} + 1 \] \[Wout=SW−K+2P+1

转置卷积的基本原理

转置卷积的操作可以被视为卷积的逆过程。其目的是将小的输入特征图扩展为更大的输出特征图。转置卷积通过插入零元素并使用卷积核计算来实现这一点。

转置卷积的计算步骤:

  • 插入零元素(Zero-Insertions):

    在输入特征图的元素之间插入零元素,增加特征图的尺寸。例如,假设步幅为 ( S ),在每个元素之间插入 ( S-1 ) 个零。

  • 填充(Padding):

    适当填充输入特征图,确保输出特征图具有预期的大小。通常填充策略与卷积核的大小和步幅相关。

  • 卷积操作:

    使用标准卷积操作在填充后的特征图上应用卷积核,生成输出特征图。

假设我们有以下参数:
  • 输入特征图大小: ( H i n × W i n ) ( H{in} \times W{in} ) (Hin×Win)
  • 卷积核大小: ( K × K ) ( K \times K ) (K×K)
  • 步幅:( S )
  • 填充:( P )

输出特征图的大小为:

H o u t = ( H i n − 1 ) × S − 2 P + K \] \[ H{out} = (H{in} - 1) \\times S - 2P + K \] \[Hout=(Hin−1)×S−2P+K

W o u t = ( W i n − 1 ) × S − 2 P + K \] \[ W{out} = (W{in} - 1) \\times S - 2P + K \] \[Wout=(Win−1)×S−2P+K

应用场景

转置卷积广泛应用于以下场景:

  • 生成对抗网络(GANs):在生成器中使用转置卷积将低维噪声向量转换为高维图像。
  • 图像超分辨率:从低分辨率图像重建高分辨率图像。
  • 语义分割:将特征图还原为输入图像的尺寸以生成像素级别的分类图。
通过转置卷积,我们可以有效地对图像进行空间上采样,实现不同的图像生成和重建任务。
相关推荐
Wnq100721 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴1 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案1 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵1 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower1 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122461 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维2 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋3 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT3 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910133 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习