分治-快排

文章目录

  • [1. 颜色分类(75)](#1. 颜色分类(75))
  • [2. 排序数组(912)](#2. 排序数组(912))
  • [3. 数组中的第K个最大元素(215)](#3. 数组中的第K个最大元素(215))
  • [4. 库存管理 III(LCR 159)](#4. 库存管理 III(LCR 159))

1. 颜色分类(75)

题目描述:

算法原理:

颜色分类是比较经典的分治问题,我们通过left,right以及i来将数组分为四个部分,如下图。

如上图,0到left区间我们全是处理好的0数字,left+1到i-1是处理好的数字1,i到right-1是待处理的数字,right到n-1是处理好的数字2。

后面我们分情况分析,当i处理到数字0的时候,此时和left+1位置的元素交swap(nums,++left,i++)。当i处理到数字1时,因为left+1到i-1的区间就是包含数字1的区间,所以对于这种情况直接i++。当i处理到数字2时,交换right-1位置的值即swap(nums,i,--right),此时i没有必要去加一,因为交换过来的元素还是未处理的元素,所以要继续处理交换过来的元素。

代码如下:

java 复制代码
class Solution {
    public void sortColors(int[] nums) {
        int left = -1, right = nums.length;
        int i = 0;
        while (i < right) {
            if (nums[i] == 0) {
                swap(nums, ++left, i++);
            } else if (nums[i] == 1) {
                i++;
            } else {
                swap(nums, --right, i);
            }
        }
    }

    public void swap(int[] nums, int m, int n) {
        int temp = nums[m];
        nums[m] = nums[n];
        nums[n] = temp;
    }
}

题目链接

2. 排序数组(912)

题目描述:

算法原理:

使用分治多指针的思想去完成快速排序,思路和上题一样,只不过上一题是将数组分为三个不同数字的部分,这一题则是去选定一个key将数组分为大于key小于key以及等于key的三部分。至于key的选取,我们采用随机的方式。
代码如下:

java 复制代码
class Solution {
    public int[] sortArray(int[] nums) {
        qsort(nums, 0, nums.length - 1);
        return nums;
    }

    public void qsort(int[] arr, int l, int r) {
        if (l >= r) {
            return;
        }
        int i = l;
        int key = arr[new Random().nextInt(r - l + 1) + l];
        int left = l - 1, right = r + 1;
        while (i < right) {
            if (arr[i] < key) {
                swap(arr, ++left, i++);
            } else if (arr[i] == key) {
                i++;
            } else {
                swap(arr, --right, i);
            }
        }
        qsort(arr, l, left);
        qsort(arr, right, r);
    }

    public void swap(int[] arr, int n1, int n2) {
        int temp = arr[n1];
        arr[n1] = arr[n2];
        arr[n2] = temp;
    }
}

题目链接

3. 数组中的第K个最大元素(215)

题目描述:

算法原理:

思想还是类似的,使用随机的key来将数组分为大于小于等于三部分,然后计算出大于部分的元素个数为c,等于部分的元素个数为b。当题目要求的k满足c>=k时就在大于区间里面找,当b+c>=k,那么就直接返回key的值即可,因为此时第k个元素肯定落在等于key的区间,该区间又全是key因此直接返回key即可,剩下的一种可能也是根据个数去找即可。
代码如下:

java 复制代码
class Solution {
    public int findKthLargest(int[] nums, int k) {
        return quickSelect(nums, 0, nums.length - 1, k);
    }

    public int quickSelect(int[] arr, int l, int r, int k) {
        if (l >= r) {
            return arr[l];
        }
        int left = l - 1, right = r + 1, i = l;
        int key = arr[new Random().nextInt(r - l + 1) + l];
        while (i < right) {
            if (arr[i] < key) {
                swap(arr, ++left, i++);
            } else if (key == arr[i]) {
                i++;
            } else {
                swap(arr, --right, i);
            }
        }

        int b = right - left - 1;
        int c = r - right + 1;

        if (c >= k) {
            return quickSelect(arr, right, r, k);
        } else if (b + c >= k) {
            return key;
        } else {
            return quickSelect(arr, l, left, k - b - c);
        }
    }

    public void swap(int[] arr, int n1, int n2) {
        int temp = arr[n1];
        arr[n1] = arr[n2];
        arr[n2] = temp;
    }
}

题目链接

4. 库存管理 III(LCR 159)

题目描述:

算法原理:

这一题其实有很多种方法,但是这里还是使用分治的思想去解决。观察题目得知实际上这就是一个让我们去求出一个数组中的前cnt个最小的值。

使用的思想和第三题类似,只不过这题在代码中不需要去返回值,而是只需要去排序,对于前k个最小值不可能出现的区间我们直接跳过,最终在主要的函数中对于排序好的数组直接取出最小的k个数构成数组返回。
代码如下:

java 复制代码
class Solution {
    public int[] inventoryManagement(int[] stock, int cnt) {
        quickSort(stock, 0, stock.length - 1, cnt);
        int[] ret = new int[cnt];
        for (int i = 0; i < cnt; i++) {
            ret[i] = stock[i];
        }

        return ret;
    }

    public void quickSort(int[] arr, int l, int r, int k) {
        if (l >= r) {
            return;
        }

        int i = l;
        int left = l - 1;
        int right = r + 1;
        int key = arr[new Random().nextInt(r - l + 1) + l];
        while (i < right) {
            if (arr[i] < key) {
                swap(arr, ++left, i++);
            } else if (arr[i] == key) {
                i++;
            } else {
                swap(arr, --right, i);
            }
        }

        int a = left - l + 1;
        int b = right - left - 1;

        if (a >= k) {
            quickSort(arr, l, left, k);
        } else if (a + b >= k) {
            return;
        } else {
            quickSort(arr, right, r, k - a - b);
        }
    }

    public void swap(int[] arr, int n1, int n2) {
        int t = arr[n1];
        arr[n1] = arr[n2];
        arr[n2] = t;
    }
}

题目链接

相关推荐
旋风菠萝2 分钟前
深入理解Java中的Minor GC、Major GC和Full GC
java·jvm·gc
苹果酱05673 分钟前
React方向:react脚手架的使用
java·vue.js·spring boot·mysql·课程设计
找不到、了3 分钟前
JVM如何处理多线程内存抢占问题
java·jvm
zhougl99617 分钟前
Apache HttpClient 5 用法-Java调用http服务
java·http·apache
spjhandsomeman20 分钟前
各个历史版本mysql/tomcat/Redis/Jdk/Apache/gitlab下载地址
java·redis·mysql·jdk·tomcat·gitlab
JeffersonZU20 分钟前
【数据结构】1-4算法的空间复杂度
c语言·数据结构·算法
L_cl26 分钟前
【Python 算法零基础 4.排序 ① 选择排序】
数据结构·算法·排序算法
未来影子27 分钟前
面试中的线程题
java·数据库·面试
为美好的生活献上中指28 分钟前
java每日精进 5.18【文件存储】
java·开发语言·minio·七牛云存储·s3·七牛云
不再幻想,脚踏实地36 分钟前
Spring AOP从0到1
java·后端·spring