Open3D 计算点到平面的距离

目录

一、概述

1.1原理

1.2实现步骤

1.3原理

二、代码实现

1.1关键函数

1.2完整代码

三、实现效果

3.1原始点云

3.2计算距离后赋色的点云


Open3D点云算法汇总及实战案例汇总的目录地址:

Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客


一、概述

可以使用Open3D和NumPy实现点到平面的距离计算。该方法在几何分析、平面拟合误差评估、质量控制、建筑物分析和地形分析等领域具有广泛的应用。通过定义平面参数、读取点云数据、计算点到平面的距离,并根据距离值进行可视化,可以精确地分析点云数据中的几何特征。

1.1原理

点到平面的距离可以通过以下公式计算:

1.2实现步骤

  1. 定义平面参数:指定平面的系数 A、B、C、D。
  2. 读取点云数据:从文件中读取点云数据。
  3. 计算点到平面的距离:使用上述公式计算每个点到平面的距离。
  4. 可视化距离结果(可选):使用Open3D可视化点云,并根据距离值着色。

1.3原理

1.几何分析:

计算点到平面的距离,用于几何形状的分析和验证。
2.平面拟合误差评估:

在平面拟合后,通过计算每个点到拟合平面的距离来评估拟合误差。
3.质量控制:

在工业检测中,通过计算点到平面的距离来评估产品表面的平整度和质量
4.建筑物分析:

在建筑物分析中,通过计算建筑物表面点到参考平面的距离来评估建筑物的结构和形态。
5.地形分析:

在地形分析中,通过计算地面点到参考平面的距离来评估地形的起伏和变化。

二、代码实现

1.1关键函数

定义一个名为 calculate_distance_to_plane的函数,该函数用于计算点到平面的距离。

python 复制代码
def calculate_distance_to_plane(points, plane_params):
    """
    计算点到平面的距离。

    参数:
    points (numpy.ndarray): 点云数据,形状为 (N, 3)。
    plane_params (tuple): 平面参数 (A, B, C, D)。

    返回:
    numpy.ndarray: 每个点到平面的距离,形状为 (N,)。
    """
    A, B, C, D = plane_params
    distances = np.abs(A * points[:, 0] + B * points[:, 1] + C * points[:, 2] + D) / np.sqrt(A**2 + B**2 + C**2)
    return distances

1.2完整代码

python 复制代码
import open3d as o3d
import numpy as np
import matplotlib.pyplot as plt

def calculate_distance_to_plane(points, plane_params):
    """
    计算点到平面的距离。

    参数:
    points (numpy.ndarray): 点云数据,形状为 (N, 3)。
    plane_params (tuple): 平面参数 (A, B, C, D)。

    返回:
    numpy.ndarray: 每个点到平面的距离,形状为 (N,)。
    """
    A, B, C, D = plane_params
    distances = np.abs(A * points[:, 0] + B * points[:, 1] + C * points[:, 2] + D) / np.sqrt(A**2 + B**2 + C**2)
    return distances

# 定义平面参数 Ax + By + Cz + D = 0
plane_params = (1, -1, 1, -1)  # 例如,平面 x - y + z - 1 = 0

# 读取点云数据
pcd = o3d.io.read_point_cloud("Armadillo.pcd")
points = np.asarray(pcd.points)

# 计算每个点到平面的距离
distances = calculate_distance_to_plane(points, plane_params)

# 可视化距离结果:根据距离值对点云着色
colors = plt.get_cmap('jet')(distances / np.max(distances))[:, :3]  # 使用Jet颜色映射
pcd.colors = o3d.utility.Vector3dVector(colors)

# 显示点云
o3d.visualization.draw_geometries([pcd], window_name="Point Cloud with Distance Coloring")

三、实现效果

3.1原始点云

3.2计算距离后赋色的点云

相关推荐
漫随流水17 小时前
leetcode算法(429.N叉树的层序遍历)
数据结构·算法·leetcode·二叉树
不会用AI的老炮17 小时前
【AI coding 智能体设计系列-07】规约驱动:让交付可复现的Spec工作流
人工智能·ai·ai编程
漫随流水17 小时前
leetcode算法(116.填充每个节点的下一个右侧节点指针)
数据结构·算法·leetcode·二叉树
_OP_CHEN17 小时前
【算法基础篇】(四十四)数论之欧拉定理与扩展欧拉定理深度解析:从降幂到超大规模幂运算
c++·算法·蓝桥杯·算法竞赛·欧拉定理·扩展欧拉定理·acm/icpc
产品人卫朋17 小时前
「产品、IPD、战略、流程」知识图谱速查清单.v7.0
人工智能·知识图谱·产品经理·需求分析·创业·ipd流程·华为ipd
用户51914958484517 小时前
深入剖析CVE-2025-41115:Grafana企业版SCIM特权升级漏洞利用实践
人工智能·aigc
lfwh17 小时前
Java 中基于 DBSCAN 算法的车辆交汇点计算实现详解
java·开发语言·算法
苏子铭17 小时前
个人笔记,关于数学工具箱功能规划与架构设计
人工智能·机器学习
盈创力和200717 小时前
从“感知”到“认知”:基于边缘AI的以太网多参量环境传感器如何重构工业物联终端?
人工智能·以太网多合一传感器·以太网温湿度气体多参量传感器
数据大魔方17 小时前
【期货量化入门】期权交易入门:从零开始学期权量化(TqSdk完整教程)
数据库·python·mysql·算法·区块链·程序员创富