MATLAB源代码|蚁群算法寻找最近的路线

蚁群算法

蚁群算法是一种优化算法,灵感来源于蚂蚁在寻找食物过程中的行为。它模拟了蚂蚁相互之间合作的行为,通过蚂蚁对于环境的反馈和信息交流,来寻找问题的最优解。

蚁群算法通常应用于求解组合优化问题,例如旅行商问题(TSP)、车辆路径问题(VRP)等。它的基本思想是将问题转化为蚂蚁在解空间中搜索的过程。

具体来说,蚁群算法包含以下步骤:

  1. 初始化蚂蚁的位置和信息素:蚂蚁随机分布在解空间中,每个位置都有一个信息素值。

  2. 蚂蚁遍历解空间:蚂蚁根据一定的概率选择下一个位置,该概率受到当前位置的信息素和启发式信息的影响。蚂蚁在解空间中移动,直到找到一个解或遍历完整个解空间。

  3. 更新信息素:蚂蚁找到一个解后,会更新路径上的信息素,使得路径上的信息素值与解的质量相关联。

  4. 重复迭代:重复步骤2和步骤3,直到达到预定的终止条件(例如达到最大迭代次数或找到最优解)。

蚁群算法的主要优势在于它能够有效地处理大规模的组合优化问题,并且具有较好的全局搜索能力。它还能够通过信息素的更新机制,实现对解空间的局部搜索和全局搜索的平衡。

然而,蚁群算法也存在一些局限性,例如易陷入局部最优解、对参数设置敏感等。因此,对于不同的问题,需要进行合理的参数调整和启发式信息设计,以使蚁群算法能够发挥最好的性能。

运行结果

迭代次数为1时,结果如下,路径杂乱无章、且绕远路的情况较多。

迭代次数为5时,结果如下,此时"蚂蚁们"找到了另一条从下面穿过来的路,但很可惜,这个方向是不对的,因为最优解其实是从上面走:

继续加大迭代次数,但迭代次数为10时,结果如下:

此时路线已经比较好了,只有 ↑ \uparrow ↑蓝色圆圈的地方还有点曲折。

迭代次数为100时,结果如下:

此时,路线6已经非常完美了。

源代码

matlab 复制代码
% 蚁群路径规划算法
% 2024-7-30/Ver1
clear;clc;close all;
rng(0);
G=[0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; 
   0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1; 
   1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1; 
   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1;]; %构建障碍物地图(1为障碍物)
len = size(G, 1);
Tau = 8. * ones(len^2, len^2);
epochs = 100;  % 迭代次数
ants = 50;  % 蚂蚁数量
start = 1;
stop = 9 * 20 + 10;
alpha = 1;
beta = 7;
rho = 0.3;
q = 1;  % 信息素增强系数
minkl = inf;
mink = 0;
minl = 0;
D = G2D(G);
n = size(D, 1);
stop_x = mod(stop, len) - 0.5;
if stop_x == - 0.5
    stop_x = len - 0.5;
end
% 更多代码下载链接:https://gf.bilibili.com/item/detail/1105932012

stop_y = len + 0.5 - ceil(stop / len);

修改建议

  • 增加迭代步数:加大 e p o c h s epochs epochs的值
  • 增加"蚂蚁"数量:加大 a n t s ants ants的值
相关推荐
程序员大雄学编程1 天前
定积分的几何应用(一):平面图形面积计算详解
开发语言·python·数学·平面·微积分
Evand J1 天前
【MATLAB例程】二维平面的TOA定位,几何精度因子GDOP和克拉美罗下界CRLB计算与输出
开发语言·matlab·平面·crlb·gdop
草莓火锅1 天前
用c++求第n个质数
开发语言·c++·算法
snakecy1 天前
自然语言处理(NLP)算法原理与实现--Part 1
人工智能·算法·自然语言处理
aniden1 天前
Swagger从入门到实战
java·开发语言·spring
萌新彭彭1 天前
vLLM主要模块Scheduler详解
算法·源码阅读
灵动小溪1 天前
时频信号分析总结
算法
CoovallyAIHub1 天前
让Qwen-VL的检测能力像YOLO一样强,VLM-FO1如何打通大模型的视觉任督二脉
深度学习·算法·计算机视觉
emma羊羊1 天前
【PHP反序列化】css夺旗赛
开发语言·网络安全·php
2401_841495641 天前
【自然语言处理】基于统计基的句子边界检测算法
人工智能·python·算法·机器学习·自然语言处理·统计学习·句子边界检测算法