使用Chainlit接入通义千问快速实现一个自然语言转sql语言的智能体

文本到 SQL

让我们构建一个简单的应用程序,帮助用户使用自然语言创建 SQL 查询。

最终结果预览

先决条件

此示例有额外的依赖项。你可以使用以下命令安装它们:

bash 复制代码
pip install chainlit openai

导入

应用程序

bash 复制代码
from openai import AsyncOpenAI

import chainlit as cl
cl.instrument_openai()
client = AsyncOpenAI(api_key="YOUR_OPENAI_API_KEY")

定义提示模板和 LLM 设置

代码

bash 复制代码
template = """SQL tables (and columns):
* Customers(customer_id, signup_date)
* Streaming(customer_id, video_id, watch_date, watch_minutes)

A well-written SQL query that {input}:
```"""


settings = {
    "model": "gpt-3.5-turbo",
    "temperature": 0,
    "max_tokens": 500,
    "top_p": 1,
    "frequency_penalty": 0,
    "presence_penalty": 0,
    "stop": ["```"],
}

添加辅助逻辑

在这里,我们用@on_message main装饰器装饰该函数,以告诉 Chainlit在每次用户发送消息时运行该main函数。

然后,我们在步骤中将文本包装到 SQL 逻辑中。

应用程序

bash 复制代码
@cl.set_starters
async def starters():
    return [
       cl.Starter(
           label=">50 minutes watched",
           message="Compute the number of customers who watched more than 50 minutes of video this month."
       )
    ]

@cl.on_message
async def main(message: cl.Message):
    stream = await client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": template.format(input=message.content),
            }
        ], stream=True, **settings
    )

    msg = await cl.Message(content="", language="sql").send()

    async for part in stream:
        if token := part.choices[0].delta.content or "":
            await msg.stream_token(token)

    await msg.update()

​完整代码如下:

bash 复制代码
import base64
from io import BytesIO
from pathlib import Path

import chainlit as cl
from chainlit.element import ElementBased
from chainlit.input_widget import Select, Slider, Switch, TextInput
from openai import AsyncOpenAI

client = AsyncOpenAI()

author = "Tarzan"

template = """SQL tables (and columns):
* Customers(customer_id, signup_date)
* Streaming(customer_id, video_id, watch_date, watch_minutes)

A well-written SQL query that {input}:
```"""


def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


@cl.on_settings_update
async def on_settings_update(settings: cl.chat_settings):
    cl.user_session.set("settings", settings)


@cl.step(type="tool")
async def tool():
    # Simulate a running task
    await cl.sleep(2)

    return "Response from the tool!"


@cl.on_chat_start
async def start_chat():
    settings = await cl.ChatSettings(
        [TextInput(id="SystemPrompt", label="System Prompt", initial="You are a helpful assistant."),
         Select(
             id="Model",
             label="Model",
             values=["qwen-turbo", "qwen-plus", "qwen-max", "qwen-long"],
             initial_index=0,
         ),
         Slider(
             id="Temperature",
             label="Temperature",
             initial=1,
             min=0,
             max=2,
             step=0.1,
         ),
         Slider(
             id="MaxTokens",
             label="MaxTokens",
             initial=1000,
             min=1000,
             max=3000,
             step=100,
         ),
         Switch(id="Streaming", label="Stream Tokens", initial=True),
         ]
    ).send()
    cl.user_session.set("settings", settings)
    cl.user_session.set(
        "message_history",
        [{"role": "system", "content": settings["SystemPrompt"]}],
    )
    content = "你好,我是泰山AI智能客服,有什么可以帮助您吗?"
    msg = cl.Message(content=content, author=author)
    await msg.send()


@cl.on_message
async def on_message(message: cl.Message):
    settings = cl.user_session.get("settings")
    print('settings', settings)
    streaming = settings['Streaming']
    model = settings['Model']
    images = [file for file in message.elements if "image" in file.mime]
    files = [file for file in message.elements if "application" in file.mime]
    messages = cl.user_session.get("message_history")
    if files:
        files = files[:3]
        file_ids = []
        for file in files:
            file_object = await client.files.create(file=Path(file.path), purpose="file-extract")
            file_ids.append(f"fileid://{file_object.id}")
        flies_content = {
            "role": "system",
            "content": ",".join(file_ids)
        }
        messages.append(flies_content)
    if images and model in ["qwen-plus", "qwen-max"]:
        # Only process the first 3 images
        images = images[:3]
        images_content = [
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:{image.mime};base64,{encode_image(image.path)}"
                },
            }
            for image in images
        ]
        model = "qwen-vl" + model[4:]
        img_message = [
            {
                "role": "user",
                "content": [{"type": "text", "text": message.content}, *images_content],
            }
        ]
        messages = messages + img_message
    msg = cl.Message(content="", author=author)
    await msg.send()
    # Call the tool
    # tool_res = await tool
    messages.append({"role": "user", "content": template.format(input=message.content)})
    print('messages', messages)
    response = await client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=settings['Temperature'],
        max_tokens=int(settings['MaxTokens']),
        stream=streaming
    )
    if streaming:
        async for part in response:
            if token := part.choices[0].delta.content or "":
                await msg.stream_token(token)
    else:
        if token := response.choices[0].message.content or "":
            await msg.stream_token(token)
    print('messages', messages)
    messages.append({"role": "assistant", "content": msg.content})
    cl.user_session.set("message_history", messages)
    await msg.update()

试试看

bash 复制代码
chainlit run .\text2sql.py -w

您可以提出类似这样的问题Compute the number of customers who watched more than 50 minutes of video this month。

相关推荐
柳鲲鹏3 分钟前
地图影像匹配:基于特征匹配的视觉定位2,python
开发语言·python
yunhuibin1 小时前
LeNet
人工智能·python
二哈喇子!7 小时前
BOM模型
开发语言·前端·javascript·bom
二哈喇子!7 小时前
Vue2 监听器 watcher
前端·javascript·vue.js
二哈喇子!7 小时前
MySQL数据更新操作
数据库·sql
二哈喇子!7 小时前
MySQL命令行导入数据库
数据库·sql·mysql·vs code
jaray8 小时前
PyCharm 2024.3.2 Professional 如何更换 PyPI 镜像源
ide·python·pycharm·pypi 镜像源
Psycho_MrZhang8 小时前
Neo4j Python SDK手册
开发语言·python·neo4j
yanyu-yaya8 小时前
前端面试题
前端·面试·前端框架
web3.08889998 小时前
1688图片搜索API,相似商品精准推荐
开发语言·python