使用Chainlit接入通义千问快速实现一个自然语言转sql语言的智能体

文本到 SQL

让我们构建一个简单的应用程序,帮助用户使用自然语言创建 SQL 查询。

最终结果预览

先决条件

此示例有额外的依赖项。你可以使用以下命令安装它们:

bash 复制代码
pip install chainlit openai

导入

应用程序

bash 复制代码
from openai import AsyncOpenAI

import chainlit as cl
cl.instrument_openai()
client = AsyncOpenAI(api_key="YOUR_OPENAI_API_KEY")

定义提示模板和 LLM 设置

代码

bash 复制代码
template = """SQL tables (and columns):
* Customers(customer_id, signup_date)
* Streaming(customer_id, video_id, watch_date, watch_minutes)

A well-written SQL query that {input}:
```"""


settings = {
    "model": "gpt-3.5-turbo",
    "temperature": 0,
    "max_tokens": 500,
    "top_p": 1,
    "frequency_penalty": 0,
    "presence_penalty": 0,
    "stop": ["```"],
}

添加辅助逻辑

在这里,我们用@on_message main装饰器装饰该函数,以告诉 Chainlit在每次用户发送消息时运行该main函数。

然后,我们在步骤中将文本包装到 SQL 逻辑中。

应用程序

bash 复制代码
@cl.set_starters
async def starters():
    return [
       cl.Starter(
           label=">50 minutes watched",
           message="Compute the number of customers who watched more than 50 minutes of video this month."
       )
    ]

@cl.on_message
async def main(message: cl.Message):
    stream = await client.chat.completions.create(
        messages=[
            {
                "role": "user",
                "content": template.format(input=message.content),
            }
        ], stream=True, **settings
    )

    msg = await cl.Message(content="", language="sql").send()

    async for part in stream:
        if token := part.choices[0].delta.content or "":
            await msg.stream_token(token)

    await msg.update()

​完整代码如下:

bash 复制代码
import base64
from io import BytesIO
from pathlib import Path

import chainlit as cl
from chainlit.element import ElementBased
from chainlit.input_widget import Select, Slider, Switch, TextInput
from openai import AsyncOpenAI

client = AsyncOpenAI()

author = "Tarzan"

template = """SQL tables (and columns):
* Customers(customer_id, signup_date)
* Streaming(customer_id, video_id, watch_date, watch_minutes)

A well-written SQL query that {input}:
```"""


def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


@cl.on_settings_update
async def on_settings_update(settings: cl.chat_settings):
    cl.user_session.set("settings", settings)


@cl.step(type="tool")
async def tool():
    # Simulate a running task
    await cl.sleep(2)

    return "Response from the tool!"


@cl.on_chat_start
async def start_chat():
    settings = await cl.ChatSettings(
        [TextInput(id="SystemPrompt", label="System Prompt", initial="You are a helpful assistant."),
         Select(
             id="Model",
             label="Model",
             values=["qwen-turbo", "qwen-plus", "qwen-max", "qwen-long"],
             initial_index=0,
         ),
         Slider(
             id="Temperature",
             label="Temperature",
             initial=1,
             min=0,
             max=2,
             step=0.1,
         ),
         Slider(
             id="MaxTokens",
             label="MaxTokens",
             initial=1000,
             min=1000,
             max=3000,
             step=100,
         ),
         Switch(id="Streaming", label="Stream Tokens", initial=True),
         ]
    ).send()
    cl.user_session.set("settings", settings)
    cl.user_session.set(
        "message_history",
        [{"role": "system", "content": settings["SystemPrompt"]}],
    )
    content = "你好,我是泰山AI智能客服,有什么可以帮助您吗?"
    msg = cl.Message(content=content, author=author)
    await msg.send()


@cl.on_message
async def on_message(message: cl.Message):
    settings = cl.user_session.get("settings")
    print('settings', settings)
    streaming = settings['Streaming']
    model = settings['Model']
    images = [file for file in message.elements if "image" in file.mime]
    files = [file for file in message.elements if "application" in file.mime]
    messages = cl.user_session.get("message_history")
    if files:
        files = files[:3]
        file_ids = []
        for file in files:
            file_object = await client.files.create(file=Path(file.path), purpose="file-extract")
            file_ids.append(f"fileid://{file_object.id}")
        flies_content = {
            "role": "system",
            "content": ",".join(file_ids)
        }
        messages.append(flies_content)
    if images and model in ["qwen-plus", "qwen-max"]:
        # Only process the first 3 images
        images = images[:3]
        images_content = [
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:{image.mime};base64,{encode_image(image.path)}"
                },
            }
            for image in images
        ]
        model = "qwen-vl" + model[4:]
        img_message = [
            {
                "role": "user",
                "content": [{"type": "text", "text": message.content}, *images_content],
            }
        ]
        messages = messages + img_message
    msg = cl.Message(content="", author=author)
    await msg.send()
    # Call the tool
    # tool_res = await tool
    messages.append({"role": "user", "content": template.format(input=message.content)})
    print('messages', messages)
    response = await client.chat.completions.create(
        model=model,
        messages=messages,
        temperature=settings['Temperature'],
        max_tokens=int(settings['MaxTokens']),
        stream=streaming
    )
    if streaming:
        async for part in response:
            if token := part.choices[0].delta.content or "":
                await msg.stream_token(token)
    else:
        if token := response.choices[0].message.content or "":
            await msg.stream_token(token)
    print('messages', messages)
    messages.append({"role": "assistant", "content": msg.content})
    cl.user_session.set("message_history", messages)
    await msg.update()

试试看

bash 复制代码
chainlit run .\text2sql.py -w

您可以提出类似这样的问题Compute the number of customers who watched more than 50 minutes of video this month。

相关推荐
Mephisto.java几秒前
【大数据学习 | kafka高级部分】kafka的文件存储原理
大数据·sql·oracle·kafka·json
coberup3 分钟前
django Forbidden (403)错误解决方法
python·django·403错误
我要洋人死23 分钟前
导航栏及下拉菜单的实现
前端·css·css3
龙哥说跨境35 分钟前
如何利用指纹浏览器爬虫绕过Cloudflare的防护?
服务器·网络·python·网络爬虫
科技探秘人35 分钟前
Chrome与火狐哪个浏览器的隐私追踪功能更好
前端·chrome
科技探秘人35 分钟前
Chrome与傲游浏览器性能与功能的深度对比
前端·chrome
JerryXZR41 分钟前
前端开发中ES6的技术细节二
前端·javascript·es6
七星静香43 分钟前
laravel chunkById 分块查询 使用时的问题
java·前端·laravel
q2498596931 小时前
前端预览word、excel、ppt
前端·word·excel
小白学大数据1 小时前
正则表达式在Kotlin中的应用:提取图片链接
开发语言·python·selenium·正则表达式·kotlin