微调LLaMA-Factory的数据集格式-fintech.json

该文件有三个元素:

  • "instruction": 这个元素通常用来描述给模型的一个指令或者任务。在这个上下文中,它说明了你希望模型执行什么样的操作或理解什么样的指导信息。例如,它可以是"请总结以下段落"或者"请将这句话翻译成英文"。

  • "input": 这个元素包含了提供给模型的输入数据。这些数据可以是文本、问题、对话的一部分或者是任何模型需要处理的信息。在微调过程中,这些输入将用来训练模型如何根据指令来生成正确的输出。

  • "output": 这个元素定义了基于给定指令和输入数据,模型应该生成的正确输出。在训练过程中,模型会尝试学习如何将输入映射到这些期望的输出上。

以下是一个示例,展示了这些元素在JSON格式中的使用:

复制代码
{
  "instruction": "请将以下句子翻译成法语。",
  "input": "Hello, how are you?",
  "output": "Bonjour, comment ça va?"
}

在这个示例中,"instruction"告诉模型需要执行翻译任务,"input"是模型需要翻译的英文句子,而"output"则是模型应该学习生成的法语翻译。这样的数据格式有助于模型理解特定的指令,并根据输入数据生成相应的输出。在微调过程中,大量的这类数据样本会被用来训练模型,以提高其在特定任务上的性能。

相关推荐
人工智能培训2 分钟前
大模型训练数据版权与知识产权问题的解决路径
人工智能·大模型·数字化转型·大模型算法·大模型应用工程师
无垠的广袤11 分钟前
【VisionFive 2 Lite 单板计算机】边缘AI视觉应用部署:缺陷检测
linux·人工智能·python·opencv·开发板
Duang007_12 分钟前
【LeetCodeHot100 超详细Agent启发版本】字母异位词分组 (Group Anagrams)
开发语言·javascript·人工智能·python
phoenix@Capricornus33 分钟前
CNN中卷积输出尺寸的计算
人工智能·神经网络·cnn
创客匠人老蒋35 分钟前
从数据库到智能体:教育企业如何构建自己的“数字大脑”?
大数据·人工智能·创客匠人
GJGCY38 分钟前
技术解析|中国智能体4类路径深度拆解,这类底座架构优势凸显
人工智能·经验分享·ai·agent·智能体·数字员工
犀思云38 分钟前
如何通过网络即服务平台实现企业数字化转型?
运维·网络·人工智能·系统架构·机器人
FIT2CLOUD飞致云1 小时前
学习笔记丨MaxKB Office Word AI翻译加载项的实现
人工智能·ai·开源·智能体·maxkb
机器视觉的发动机1 小时前
从实验室到工业现场:机器人视觉感知系统的边缘AI架构实战, 深度解析硬件选型、TensorRT量化加速与多传感器融合的极致优化方案
人工智能·机器人·视觉检测·人机交互·机器视觉
雾削木1 小时前
AI文献提示词prompts
人工智能