微调LLaMA-Factory的数据集格式-fintech.json

该文件有三个元素:

  • "instruction": 这个元素通常用来描述给模型的一个指令或者任务。在这个上下文中,它说明了你希望模型执行什么样的操作或理解什么样的指导信息。例如,它可以是"请总结以下段落"或者"请将这句话翻译成英文"。

  • "input": 这个元素包含了提供给模型的输入数据。这些数据可以是文本、问题、对话的一部分或者是任何模型需要处理的信息。在微调过程中,这些输入将用来训练模型如何根据指令来生成正确的输出。

  • "output": 这个元素定义了基于给定指令和输入数据,模型应该生成的正确输出。在训练过程中,模型会尝试学习如何将输入映射到这些期望的输出上。

以下是一个示例,展示了这些元素在JSON格式中的使用:

复制代码
{
  "instruction": "请将以下句子翻译成法语。",
  "input": "Hello, how are you?",
  "output": "Bonjour, comment ça va?"
}

在这个示例中,"instruction"告诉模型需要执行翻译任务,"input"是模型需要翻译的英文句子,而"output"则是模型应该学习生成的法语翻译。这样的数据格式有助于模型理解特定的指令,并根据输入数据生成相应的输出。在微调过程中,大量的这类数据样本会被用来训练模型,以提高其在特定任务上的性能。

相关推荐
weisian15128 分钟前
进阶篇-8-数学篇-7--特征值与特征向量:AI特征提取的核心逻辑
人工智能·pca·特征值·特征向量·降维
Java程序员 拥抱ai31 分钟前
撰写「从0到1构建下一代游戏AI客服」系列技术博客的初衷
人工智能
186******2053134 分钟前
AI重构项目开发全流程:效率革命与实践指南
人工智能·重构
森之鸟43 分钟前
多智能体系统开发入门:用鸿蒙实现设备间的AI协同决策
人工智能·harmonyos·m
铁蛋AI编程实战1 小时前
大模型本地轻量化微调+端侧部署实战(免高端GPU/16G PC可运行)
人工智能·架构·开源
铁蛋AI编程实战1 小时前
最新版 Kimi K2.5 完整使用教程:从入门到实战(开源部署+API接入+多模态核心功能)
人工智能·开源
我有医保我先冲1 小时前
AI 时代 “任务完成“ 与 “专业能力“ 的区分:理论基础、行业影响与个人发展策略
人工智能·python·机器学习
林深现海1 小时前
【刘二大人】PyTorch深度学习实践笔记 —— 第一集:深度学习全景概述(超详细版)
pytorch·笔记·深度学习
Bamtone20251 小时前
PCB切片分析新方案:Bamtone MS90集成AI的智能测量解决方案
人工智能
Warren2Lynch1 小时前
2026年专业软件工程与企业架构的智能化演进
人工智能·架构·软件工程