微调LLaMA-Factory的数据集格式-fintech.json

该文件有三个元素:

  • "instruction": 这个元素通常用来描述给模型的一个指令或者任务。在这个上下文中,它说明了你希望模型执行什么样的操作或理解什么样的指导信息。例如,它可以是"请总结以下段落"或者"请将这句话翻译成英文"。

  • "input": 这个元素包含了提供给模型的输入数据。这些数据可以是文本、问题、对话的一部分或者是任何模型需要处理的信息。在微调过程中,这些输入将用来训练模型如何根据指令来生成正确的输出。

  • "output": 这个元素定义了基于给定指令和输入数据,模型应该生成的正确输出。在训练过程中,模型会尝试学习如何将输入映射到这些期望的输出上。

以下是一个示例,展示了这些元素在JSON格式中的使用:

复制代码
{
  "instruction": "请将以下句子翻译成法语。",
  "input": "Hello, how are you?",
  "output": "Bonjour, comment ça va?"
}

在这个示例中,"instruction"告诉模型需要执行翻译任务,"input"是模型需要翻译的英文句子,而"output"则是模型应该学习生成的法语翻译。这样的数据格式有助于模型理解特定的指令,并根据输入数据生成相应的输出。在微调过程中,大量的这类数据样本会被用来训练模型,以提高其在特定任务上的性能。

相关推荐
AKAMAI4 小时前
Akamai Cloud客户案例 | Avesha 在 Akamai 云上扩展 Kubernetes 解决方案
人工智能·云计算
wasp5204 小时前
AgentScope Java 核心架构深度解析
java·开发语言·人工智能·架构·agentscope
智算菩萨4 小时前
高效多模态大语言模型:从统一框架到训练与推理效率的系统化理论梳理
大数据·人工智能·多模态
free-elcmacom4 小时前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
liliangcsdn5 小时前
python模拟beam search优化LLM输出过程
人工智能·python
算法与编程之美5 小时前
深度学习任务中的多层卷积与全连接输出方法
人工智能·深度学习
Deepoch5 小时前
具身智能产业新范式:Deepoc开发板如何破解机器人智能化升级难题
人工智能·科技·机器人·开发板·具身模型·deepoc
浪子不回头4155 小时前
SGLang学习笔记
人工智能·笔记·学习
飞哥数智坊6 小时前
TRAE 国内版 SOLO 全放开
人工智能·ai编程·trae
落叶,听雪6 小时前
AI建站推荐
大数据·人工智能·python