微调LLaMA-Factory的数据集格式-fintech.json

该文件有三个元素:

  • "instruction": 这个元素通常用来描述给模型的一个指令或者任务。在这个上下文中,它说明了你希望模型执行什么样的操作或理解什么样的指导信息。例如,它可以是"请总结以下段落"或者"请将这句话翻译成英文"。

  • "input": 这个元素包含了提供给模型的输入数据。这些数据可以是文本、问题、对话的一部分或者是任何模型需要处理的信息。在微调过程中,这些输入将用来训练模型如何根据指令来生成正确的输出。

  • "output": 这个元素定义了基于给定指令和输入数据,模型应该生成的正确输出。在训练过程中,模型会尝试学习如何将输入映射到这些期望的输出上。

以下是一个示例,展示了这些元素在JSON格式中的使用:

复制代码
{
  "instruction": "请将以下句子翻译成法语。",
  "input": "Hello, how are you?",
  "output": "Bonjour, comment ça va?"
}

在这个示例中,"instruction"告诉模型需要执行翻译任务,"input"是模型需要翻译的英文句子,而"output"则是模型应该学习生成的法语翻译。这样的数据格式有助于模型理解特定的指令,并根据输入数据生成相应的输出。在微调过程中,大量的这类数据样本会被用来训练模型,以提高其在特定任务上的性能。

相关推荐
飞哥数智坊9 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三9 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯10 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet12 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算12 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心12 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar13 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai13 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI14 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear15 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp