MATLAB代码|蚁群算法|计算二元函数最小值

总述

给了一个蚁群算法,使用MATLAB编程,程序只有一个m文件,便于调试和运行。蚁群优化求函数最小值,在定义域内分布若干个蚂蚁,通过蚁群寻优,获得:

  • 函数在定义域内的最小值,以及:
  • 取到最小值时,自变量的取值

函数形式

待求最小值函数的形式如下:
f ( x ) = x 4 − 0.2 ∗ c o s ( 3 x ⋅ π ) + 0.6 f(x) = x^4 - 0.2 * cos(3x\cdot\pi) + 0.6 f(x)=x4−0.2∗cos(3x⋅π)+0.6

可以根据实际情况修改。

本程序在以上函数、-1~1这段区间内求函数最小值、取最小值时的自变量x取值。

程序运行结果

初始时刻蚁群的分布情况:

优化后的蚁群的分布情况:

根据优化后的蚁群分布,求解最小值为0.4,当x=-0.04263时取到最小值0.415735.

根据实际直观感受,真实值应该为0.4,精度达到 ( 0.415735 − 0.4 ) / 0.4 = 0.0393375 (0.415735-0.4)/0.4=0.0393375 (0.415735−0.4)/0.4=0.0393375,约4%的误差。

源代码

matlab 复制代码
% 蚁群求解一元函数最大值
% 2024-8-4/Ver1
clear;clc;close all;
rng(0);
Ants = 300; %蚂蚁数量
Times = 80; %仿真时长
Rou = 0.9;
P0 = 0.2;
x_lower = -1; %x轴范围下界
x_upper = 1; %x轴范围上界限

%% 随机生成蚁群位置
ant = zeros(Ants, 1);
for i = 1: Ants
    ant(i, 1) = x_lower + (x_upper - x_lower) * rand;
    Tau(i) = F(ant(i, 1));  % 信息素
end

step = 0.05; %网格密度
f = '(x.^4 - 0.2 * cos(3 * pi * x)  + 0.6)';
%% 画图
x= x_lower:step:x_upper;
z = eval(f);
figure;
plot(x,z)
hold on;
plot(ant(:, 1), Tau, 'k*');
fprintf('程序源代码下载链接:https://gf.bilibili.com/item/detail/1105978012');
title('函数形状与初始状态的粒子分布情况');

代码修改指南

下图中的step是定义域内,自变量的取值密度,step越小越精准,相应的计算时间会变长

f和后面的函数F存放待求函数:

将其修改成自己想要的程序以后,可以获得自己想要的值。

定义域修改这里:

如图,即为定义域在-1~1这段范围内,修改起来简单,不做赘述

相关推荐
SmartRadio6 小时前
CH585M+MK8000、DW1000 (UWB)+W25Q16的低功耗室内定位设计
c语言·开发语言·uwb
rfidunion6 小时前
QT5.7.0编译移植
开发语言·qt
少林码僧6 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)6 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
rit84324996 小时前
MATLAB对组合巴克码抗干扰仿真的实现方案
开发语言·matlab
大、男人6 小时前
python之asynccontextmanager学习
开发语言·python·学习
hqwest7 小时前
码上通QT实战08--导航按钮切换界面
开发语言·qt·slot·信号与槽·connect·signals·emit
Niuguangshuo7 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
a3158238067 小时前
Android 大图显示策略优化显示(一)
android·算法·图片加载·大图片
AC赳赳老秦7 小时前
DeepSeek 私有化部署避坑指南:敏感数据本地化处理与合规性检测详解
大数据·开发语言·数据库·人工智能·自动化·php·deepseek