利用PyTorch训练时的一些关于分布式训练的总结

1.PyTorch模型的并行化

PyTorch模型的并行化方法分为模型并行(Model Parallel)和数据并行(DataParallel) 。PyTorch主要支持的是数据并行化的概念,这个概念在PyTorch中分为两种类型,即数据并行化(Data Parallel, DP)和分布式数据并行化(Distributed Data Parallel, DDP)

2.两种数据并行化方式的说明及使用

(1)DP 使用的是torch.nn.DataParallel类

python 复制代码
torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0) 

该类传入一个PyTorch的模块,且这个模块必须是先保存在主GPU上,其工作原理是将模型从主GPU设备上复制到device_ids指定的设备上;dim参数规定了迷你批次的分割方向。 使用示例如下:

python 复制代码
import torch.nn as nn
model = ...
model = model.cuda()
model = nn.DataParallel(model, device_ids=[0,1], dim=0)
output = model(input)

(2)DDP 使用的是torch.distributed分布式计算包,具体可分为对所有计算进程进行初始化、定义分布式训练的数据采样器、构建分布式数据并行模型。torch.distributed 提供了更好的接口和并行方式,搭配多进程接口 torch.multiprocessing可以提供更加高效的并行训练。 使用示例如下:

python 复制代码
"""""
@Author     :   jiguotong
@Contact    :   1776220977@qq.com
@site       :   
-----------------------------------------------
@Time       :   2024/8/1
@Description:   本代码用来测试torch的DDP使用方法;本代码使用PyTorch版本为2.0.1,不同版本调用方式不同
""" ""

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import Dataset
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP


class TestModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(3, 16, 3, 1, 1)
        self.bn1 = nn.BatchNorm1d(16)
        self.conv2 = nn.Conv1d(16, 32, 3, 1, 1)
        self.bn2 = nn.BatchNorm1d(32)
        self.conv3 = nn.Conv1d(32, 3, 3, 1, 1)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.relu(self.bn2(self.conv2(x)))
        x = self.relu(self.conv3(x))
        return x


class TestDataset(Dataset):

    def __init__(self, n):
        self.n = n
        pass

    def __len__(self):
        pass
        return self.n

    def __getitem__(self, index):
        data = torch.randn((3, 10000))
        target = torch.randn((3, 10000))
        return data, target


def main_worker(rank, world_size):
    model = TestModel().to(rank)
    train_dataset = TestDataset(100)

    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)

    # 用于分布式训练的数据采样器
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=4,
                                               sampler=train_sampler)
    # 构建分布式数据并行模型
    model = DDP(model, device_ids=[rank])

    optimizer = optim.SGD(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()

    for epoch in range(1000):
        # 避免数据一致
        train_sampler.set_epoch(epoch)
        for batch_idx, (input, target) in enumerate(train_loader):
            input = input.to(rank)
            target = target.to(rank)

            output = model(input)
            loss = criterion(output, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        if rank == 0:
            print("current epoch: {} , loss: {} ".format(epoch, loss.item()))
    print("Done!")


if __name__ == '__main__':

    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["MASTER_PORT"] = "7777"

    world_size = 2

    # 使用torch.multiprocessing开启多个进程
    mp.spawn(main_worker, args=(world_size, ), nprocs=world_size, join=True)

    # pass
相关推荐
珺毅同学1 分钟前
YOLO输出COCO指标及YOLOv12报错
python·深度学习·yolo
半旧夜夏1 小时前
【分布式缓存】Redis持久化和集群部署攻略
java·运维·redis·分布式·缓存
2401_841495642 小时前
Windows 系统中ffmpeg安装问题的彻底解决
windows·python·ffmpeg·bug·语音识别·下载·安装步骤
waysolong902 小时前
MCP服务构建、使用
python
胜天半月子3 小时前
Python自动化测试 | 快速认识并了解pytest的基本使用
服务器·python·pytest
小小测试开发3 小时前
Python Web3库入门:从零开始与以太坊区块链交互
python·web3·区块链
独行soc3 小时前
2025年渗透测试面试题总结-224(题目+回答)
网络·python·安全·web安全·adb·渗透测试·安全狮
程序员三藏3 小时前
软件测试之环境搭建及测试流程
自动化测试·软件测试·python·功能测试·测试工具·职场和发展·测试用例
10岁的博客3 小时前
PyTorch快速搭建CV模型实战
人工智能·pytorch·python
还是大剑师兰特3 小时前
Hadoop面试题及详细答案 110题 (106-110)-- Hadoop高级与实战
大数据·hadoop·分布式