利用PyTorch训练时的一些关于分布式训练的总结

1.PyTorch模型的并行化

PyTorch模型的并行化方法分为模型并行(Model Parallel)和数据并行(DataParallel) 。PyTorch主要支持的是数据并行化的概念,这个概念在PyTorch中分为两种类型,即数据并行化(Data Parallel, DP)和分布式数据并行化(Distributed Data Parallel, DDP)

2.两种数据并行化方式的说明及使用

(1)DP 使用的是torch.nn.DataParallel类

python 复制代码
torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0) 

该类传入一个PyTorch的模块,且这个模块必须是先保存在主GPU上,其工作原理是将模型从主GPU设备上复制到device_ids指定的设备上;dim参数规定了迷你批次的分割方向。 使用示例如下:

python 复制代码
import torch.nn as nn
model = ...
model = model.cuda()
model = nn.DataParallel(model, device_ids=[0,1], dim=0)
output = model(input)

(2)DDP 使用的是torch.distributed分布式计算包,具体可分为对所有计算进程进行初始化、定义分布式训练的数据采样器、构建分布式数据并行模型。torch.distributed 提供了更好的接口和并行方式,搭配多进程接口 torch.multiprocessing可以提供更加高效的并行训练。 使用示例如下:

python 复制代码
"""""
@Author     :   jiguotong
@Contact    :   1776220977@qq.com
@site       :   
-----------------------------------------------
@Time       :   2024/8/1
@Description:   本代码用来测试torch的DDP使用方法;本代码使用PyTorch版本为2.0.1,不同版本调用方式不同
""" ""

import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import Dataset
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP


class TestModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(3, 16, 3, 1, 1)
        self.bn1 = nn.BatchNorm1d(16)
        self.conv2 = nn.Conv1d(16, 32, 3, 1, 1)
        self.bn2 = nn.BatchNorm1d(32)
        self.conv3 = nn.Conv1d(32, 3, 3, 1, 1)
        self.relu = nn.ReLU()

    def forward(self, x):
        x = self.relu(self.bn1(self.conv1(x)))
        x = self.relu(self.bn2(self.conv2(x)))
        x = self.relu(self.conv3(x))
        return x


class TestDataset(Dataset):

    def __init__(self, n):
        self.n = n
        pass

    def __len__(self):
        pass
        return self.n

    def __getitem__(self, index):
        data = torch.randn((3, 10000))
        target = torch.randn((3, 10000))
        return data, target


def main_worker(rank, world_size):
    model = TestModel().to(rank)
    train_dataset = TestDataset(100)

    dist.init_process_group(backend="nccl", rank=rank, world_size=world_size)

    # 用于分布式训练的数据采样器
    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_dataset)

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=4,
                                               sampler=train_sampler)
    # 构建分布式数据并行模型
    model = DDP(model, device_ids=[rank])

    optimizer = optim.SGD(model.parameters(), lr=0.001)
    criterion = nn.CrossEntropyLoss()

    for epoch in range(1000):
        # 避免数据一致
        train_sampler.set_epoch(epoch)
        for batch_idx, (input, target) in enumerate(train_loader):
            input = input.to(rank)
            target = target.to(rank)

            output = model(input)
            loss = criterion(output, target)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        if rank == 0:
            print("current epoch: {} , loss: {} ".format(epoch, loss.item()))
    print("Done!")


if __name__ == '__main__':

    os.environ["MASTER_ADDR"] = "127.0.0.1"
    os.environ["MASTER_PORT"] = "7777"

    world_size = 2

    # 使用torch.multiprocessing开启多个进程
    mp.spawn(main_worker, args=(world_size, ), nprocs=world_size, join=True)

    # pass
相关推荐
测试人社区—小叶子1 分钟前
边缘计算与AI:下一代智能应用的核心架构
运维·网络·人工智能·python·架构·边缘计算
二川bro1 分钟前
性能分析指南:Python cProfile优化实战
开发语言·python
忆~遂愿10 分钟前
昇腾 Triton-Ascend 开源实战:架构解析、环境搭建与配置速查
人工智能·python·深度学习·机器学习·自然语言处理
测试人社区—小叶子10 分钟前
金融系统迁移测试:历时半年的完整实践复盘
运维·网络·人工智能·python·测试工具·金融
Q_Q51100828512 分钟前
python+springboot+django/flask基于深度学习的音乐推荐系统
spring boot·python·django·flask·node.js·php
sunshine~~~13 分钟前
ROS 2 Jazzy + Python 3.12 + Web 前端案例
开发语言·前端·python·anaconda·ros2
Q_Q51100828517 分钟前
python+springboot+django/flask基于深度学习的淘宝用户购物可视化与行为预测系统
spring boot·python·django·flask·node.js·php
高洁0119 分钟前
向量数据库拥抱大模型
python·深度学习·算法·机器学习·transformer
深度学习lover22 分钟前
<数据集>yolo茶叶嫩芽识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·茶叶嫩芽识别
识途老码25 分钟前
python程序替换全局socket
服务器·网络·python