使用贝叶斯估计更新显函数参数

问题设定

假设我们有以下映射关系:

f ( x ) = θ 1 × exp ⁡ ( − y − exp ⁡ ( − y ) ) f(x) = \theta_1 \times \exp(-y - \exp(-y)) f(x)=θ1×exp(−y−exp(−y))

其中

y = θ 1 × ( x − θ 2 ) y = \theta_1 \times (x - \theta_2) y=θ1×(x−θ2)

我们将对参数 θ 1 \theta_1 θ1 和 θ 2 \theta_2 θ2 进行贝叶斯更新。

数据

假设新的数据点为:

D = { ( x 1 , f 1 ) , ( x 2 , f 2 ) , ... , ( x 5 , f 5 ) } D = \{(x_1, f_1), (x_2, f_2), \ldots, (x_5, f_5)\} D={(x1,f1),(x2,f2),...,(x5,f5)}

步骤

1. 定义先验分布

选择参数的先验分布。假设 θ 1 \theta_1 θ1 和 θ 2 \theta_2 θ2的先验是正态分布:

θ 1 ∼ N ( μ 1 , σ 1 2 ) \theta_1 \sim \mathcal{N}(\mu_1, \sigma_1^2) θ1∼N(μ1,σ12)

θ 2 ∼ N ( μ 2 , σ 2 2 ) \theta_2 \sim \mathcal{N}(\mu_2, \sigma_2^2) θ2∼N(μ2,σ22)

2. 定义似然函数

对于给定的数据点 ((x_i, f_i)),似然函数可以定义为:

L ( θ 1 , θ 2 ∣ D ) = ∏ i = 1 5 N ( f i ∣ θ 1 × exp ⁡ ( − y i − exp ⁡ ( − y i ) ) , σ 2 ) L(\theta_1, \theta_2 | D) = \prod_{i=1}^{5} \mathcal{N}\left(f_i \mid \theta_1 \times \exp(-y_i - \exp(-y_i)), \sigma^2\right) L(θ1,θ2∣D)=i=1∏5N(fi∣θ1×exp(−yi−exp(−yi)),σ2)

其中 ( y_i = \theta_1 \times (x_i - \theta_2) )。

3. 计算后验分布

根据贝叶斯公式,后验分布为:

p ( θ 1 , θ 2 ∣ D ) ∝ L ( θ 1 , θ 2 ∣ D ) ⋅ p ( θ 1 ) ⋅ p ( θ 2 ) p(\theta_1, \theta_2 | D) \propto L(\theta_1, \theta_2 | D) \cdot p(\theta_1) \cdot p(\theta_2) p(θ1,θ2∣D)∝L(θ1,θ2∣D)⋅p(θ1)⋅p(θ2)

具体来说:

p ( θ 1 , θ 2 ∣ D ) ∝ ∏ i = 1 5 exp ⁡ ( − ( f i − θ 1 × exp ⁡ ( − y i − exp ⁡ ( − y i ) ) ) 2 2 σ 2 ) ⋅ exp ⁡ ( − ( θ 1 − μ 1 ) 2 2 σ 1 2 ) ⋅ exp ⁡ ( − ( θ 2 − μ 2 ) 2 2 σ 2 2 ) p(\theta_1, \theta_2 | D) \propto \prod_{i=1}^{5} \exp\left(-\frac{(f_i - \theta_1 \times \exp(-y_i - \exp(-y_i)))^2}{2\sigma^2}\right) \cdot \exp\left(-\frac{(\theta_1 - \mu_1)^2}{2\sigma_1^2}\right) \cdot \exp\left(-\frac{(\theta_2 - \mu_2)^2}{2\sigma_2^2}\right) p(θ1,θ2∣D)∝i=1∏5exp(−2σ2(fi−θ1×exp(−yi−exp(−yi)))2)⋅exp(−2σ12(θ1−μ1)2)⋅exp(−2σ22(θ2−μ2)2)

4. 最大化后验分布

通过最大化后验分布来找到参数的更新估计:

arg ⁡ max ⁡ θ 1 , θ 2 log ⁡ p ( θ 1 , θ 2 ∣ D ) \arg\max_{\theta_1, \theta_2} \log p(\theta_1, \theta_2 | D) argθ1,θ2maxlogp(θ1,θ2∣D)

这等价于最小化负对数后验:

− log ⁡ p ( θ 1 , θ 2 ∣ D ) = ∑ i = 1 5 ( f i − θ 1 × exp ⁡ ( − y i − exp ⁡ ( − y i ) ) ) 2 2 σ 2 + ( θ 1 − μ 1 ) 2 2 σ 1 2 + ( θ 2 − μ 2 ) 2 2 σ 2 2 -\log p(\theta_1, \theta_2 | D) = \sum_{i=1}^{5} \frac{(f_i - \theta_1 \times \exp(-y_i - \exp(-y_i)))^2}{2\sigma^2} + \frac{(\theta_1 - \mu_1)^2}{2\sigma_1^2} + \frac{(\theta_2 - \mu_2)^2}{2\sigma_2^2} −logp(θ1,θ2∣D)=i=1∑52σ2(fi−θ1×exp(−yi−exp(−yi)))2+2σ12(θ1−μ1)2+2σ22(θ2−μ2)2

相关推荐
AI科技星2 天前
张祥前统一场论核心场方程的经典验证-基于电子与质子的求导溯源及力的精确计算
线性代数·算法·机器学习·矩阵·概率论
Fleshy数模3 天前
从一条直线开始:线性回归的底层逻辑与实战
人工智能·机器学习·概率论
seeInfinite4 天前
面试常见数学概率题
概率论
木非哲5 天前
AB实验必修课(一):线性回归的深度重构与稳定性评估
线性回归·概率论·abtest
大江东去浪淘尽千古风流人物7 天前
【LingBot-Depth】Masked Depth Modeling for Spatial Perception
人工智能·算法·机器学习·概率论
闪闪发亮的小星星8 天前
主旋参数定义
算法·机器学习·概率论
辰尘_星启11 天前
[最优控制]MPC模型预测控制
线性代数·机器学习·机器人·概率论·控制·现代控制
passxgx11 天前
12.1 均值、方差与概率
算法·均值算法·概率论
Cathy Bryant11 天前
softmax函数与logits
笔记·神经网络·机器学习·概率论·信息与通信
墨上烟雨11 天前
古典概型与几何概型
概率论