问题设定
假设我们有以下映射关系:
f ( x ) = θ 1 × exp ( − y − exp ( − y ) ) f(x) = \theta_1 \times \exp(-y - \exp(-y)) f(x)=θ1×exp(−y−exp(−y))
其中
y = θ 1 × ( x − θ 2 ) y = \theta_1 \times (x - \theta_2) y=θ1×(x−θ2)
我们将对参数 θ 1 \theta_1 θ1 和 θ 2 \theta_2 θ2 进行贝叶斯更新。
数据
假设新的数据点为:
D = { ( x 1 , f 1 ) , ( x 2 , f 2 ) , ... , ( x 5 , f 5 ) } D = \{(x_1, f_1), (x_2, f_2), \ldots, (x_5, f_5)\} D={(x1,f1),(x2,f2),...,(x5,f5)}
步骤
1. 定义先验分布
选择参数的先验分布。假设 θ 1 \theta_1 θ1 和 θ 2 \theta_2 θ2的先验是正态分布:
θ 1 ∼ N ( μ 1 , σ 1 2 ) \theta_1 \sim \mathcal{N}(\mu_1, \sigma_1^2) θ1∼N(μ1,σ12)
θ 2 ∼ N ( μ 2 , σ 2 2 ) \theta_2 \sim \mathcal{N}(\mu_2, \sigma_2^2) θ2∼N(μ2,σ22)
2. 定义似然函数
对于给定的数据点 ((x_i, f_i)),似然函数可以定义为:
L ( θ 1 , θ 2 ∣ D ) = ∏ i = 1 5 N ( f i ∣ θ 1 × exp ( − y i − exp ( − y i ) ) , σ 2 ) L(\theta_1, \theta_2 | D) = \prod_{i=1}^{5} \mathcal{N}\left(f_i \mid \theta_1 \times \exp(-y_i - \exp(-y_i)), \sigma^2\right) L(θ1,θ2∣D)=i=1∏5N(fi∣θ1×exp(−yi−exp(−yi)),σ2)
其中 ( y_i = \theta_1 \times (x_i - \theta_2) )。
3. 计算后验分布
根据贝叶斯公式,后验分布为:
p ( θ 1 , θ 2 ∣ D ) ∝ L ( θ 1 , θ 2 ∣ D ) ⋅ p ( θ 1 ) ⋅ p ( θ 2 ) p(\theta_1, \theta_2 | D) \propto L(\theta_1, \theta_2 | D) \cdot p(\theta_1) \cdot p(\theta_2) p(θ1,θ2∣D)∝L(θ1,θ2∣D)⋅p(θ1)⋅p(θ2)
具体来说:
p ( θ 1 , θ 2 ∣ D ) ∝ ∏ i = 1 5 exp ( − ( f i − θ 1 × exp ( − y i − exp ( − y i ) ) ) 2 2 σ 2 ) ⋅ exp ( − ( θ 1 − μ 1 ) 2 2 σ 1 2 ) ⋅ exp ( − ( θ 2 − μ 2 ) 2 2 σ 2 2 ) p(\theta_1, \theta_2 | D) \propto \prod_{i=1}^{5} \exp\left(-\frac{(f_i - \theta_1 \times \exp(-y_i - \exp(-y_i)))^2}{2\sigma^2}\right) \cdot \exp\left(-\frac{(\theta_1 - \mu_1)^2}{2\sigma_1^2}\right) \cdot \exp\left(-\frac{(\theta_2 - \mu_2)^2}{2\sigma_2^2}\right) p(θ1,θ2∣D)∝i=1∏5exp(−2σ2(fi−θ1×exp(−yi−exp(−yi)))2)⋅exp(−2σ12(θ1−μ1)2)⋅exp(−2σ22(θ2−μ2)2)
4. 最大化后验分布
通过最大化后验分布来找到参数的更新估计:
arg max θ 1 , θ 2 log p ( θ 1 , θ 2 ∣ D ) \arg\max_{\theta_1, \theta_2} \log p(\theta_1, \theta_2 | D) argθ1,θ2maxlogp(θ1,θ2∣D)
这等价于最小化负对数后验:
− log p ( θ 1 , θ 2 ∣ D ) = ∑ i = 1 5 ( f i − θ 1 × exp ( − y i − exp ( − y i ) ) ) 2 2 σ 2 + ( θ 1 − μ 1 ) 2 2 σ 1 2 + ( θ 2 − μ 2 ) 2 2 σ 2 2 -\log p(\theta_1, \theta_2 | D) = \sum_{i=1}^{5} \frac{(f_i - \theta_1 \times \exp(-y_i - \exp(-y_i)))^2}{2\sigma^2} + \frac{(\theta_1 - \mu_1)^2}{2\sigma_1^2} + \frac{(\theta_2 - \mu_2)^2}{2\sigma_2^2} −logp(θ1,θ2∣D)=i=1∑52σ2(fi−θ1×exp(−yi−exp(−yi)))2+2σ12(θ1−μ1)2+2σ22(θ2−μ2)2