深入探索Scikit-Learn聚类分析:方法与实践

聚类分析是一种无监督学习技术,用于将数据集中的对象分组,使得同一组内的对象比其他组的对象更相似。Scikit-learn是一个强大的Python机器学习库,提供了多种聚类算法,使得聚类分析变得简单而高效。本文将详细介绍如何使用Scikit-Learn进行聚类分析,包括KMeans、层次聚类和DBSCAN等方法。

1. 聚类分析简介

聚类分析的目标是将数据集中的样本划分为多个簇,使得簇内的样本相似度高,而簇间的样本相似度低。聚类分析在市场细分、社交网络分析、天文数据分析等多个领域都有广泛应用。

2. KMeans聚类

KMeans是最常用的聚类算法之一,其目标是最小化簇内样本与簇中心的距离之和。以下是使用Scikit-Learn进行KMeans聚类的步骤:

  1. 导入库:导入Scikit-Learn中的KMeans类。
  2. 准备数据:加载并预处理数据,通常需要进行标准化。
  3. 选择聚类数(K值):使用肘部法则等方法确定最佳的K值。
  4. 训练模型:使用确定的K值训练KMeans模型。
  5. 聚类标签分配:模型为每个样本分配聚类标签。
  6. 评估模型:评估聚类效果,可以使用轮廓系数等指标。
python 复制代码
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler
import numpy as np

# 假设X是已经预处理并标准化后的数据
X = np.array([[1, 2], [1, 4], [1, 0],
              [10, 2], [10, 4], [10, 0]])

# 标准化数据
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# 选择聚类数(K值)
# 这里假设选择了2作为聚类数
kmeans = KMeans(n_clusters=2, random_state=42)

# 训练模型
kmeans.fit(X_scaled)

# 聚类标签分配
predicted_labels = kmeans.predict(X_scaled)

print("聚类标签:", predicted_labels)
3. 层次聚类

层次聚类是一种基于树状层次结构的聚类方法,可以生成不同层次的聚类结果。Scikit-Learn提供了两种层次聚类方法:凝聚的和分裂的。

  1. 选择链接方法:选择"单链接"、"全链接"或"平均链接"等方法。
  2. 构建树状层次结构:根据链接方法构建层次聚类树。
  3. 剪枝:根据需要的簇的数量剪枝,得到最终的聚类结果。
python 复制代码
from sklearn.cluster import AgglomerativeClustering

# 使用凝聚的层次聚类
hierarchical_clustering = AgglomerativeClustering(n_clusters=2)
hierarchical_labels = hierarchical_clustering.fit_predict(X_scaled)

print("层次聚类标签:", hierarchical_labels)
4. DBSCAN聚类

DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,能够发现任意形状的簇,并能识别噪声点。

  1. 设置参数 :设置邻域大小(eps)和最小样本数(min_samples)。
  2. 训练模型:使用设置的参数训练DBSCAN模型。
  3. 聚类标签分配:模型为每个样本分配聚类标签,包括噪声点。
python 复制代码
from sklearn.cluster import DBSCAN

dbscan = DBSCAN(eps=0.5, min_samples=5)
dbscan_labels = dbscan.fit_predict(X_scaled)

print("DBSCAN聚类标签:", dbscan_labels)
5. 聚类评估

聚类评估通常比较困难,因为没有"正确"的答案。但是,可以使用轮廓系数等指标来评估聚类的一致性和分离度。

python 复制代码
from sklearn.metrics import silhouette_score

silhouette_avg = silhouette_score(X_scaled, predicted_labels)
print("轮廓系数:", silhouette_avg)
6. 结论

聚类分析是探索性数据分析的重要工具,Scikit-Learn提供了多种聚类算法和工具,使得聚类分析变得简单而高效。通过选择合适的聚类算法和参数,可以发现数据中的潜在结构。本文详细介绍了KMeans、层次聚类和DBSCAN聚类方法的使用,并通过代码示例展示了聚类分析的流程。随着数据科学领域的不断发展,聚类分析将继续是数据分析的重要工具之一。

本文详细介绍了使用Scikit-Learn进行聚类分析的方法,包括KMeans、层次聚类和DBSCAN等聚类技术的使用,以及如何评估聚类效果。通过实际的代码示例,读者可以更好地理解聚类分析的实现过程和注意事项。随着Scikit-Learn库的不断发展,聚类分析将变得更加强大和灵活。

相关推荐
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
阡之尘埃7 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
Java Fans11 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习
慕卿扬12 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn
夏天里的肥宅水13 小时前
机器学习3_支持向量机_线性不可分——MOOC
人工智能·机器学习·支持向量机
Troc_wangpeng14 小时前
机器学习的转型
人工智能·机器学习
小言从不摸鱼14 小时前
【NLP自然语言处理】深入解析Encoder与Decoder模块:结构、作用与深度学习应用
人工智能·深度学习·神经网络·机器学习·自然语言处理·transformer·1024程序员节
小码贾15 小时前
评估 机器学习 回归模型 的性能和准确度
人工智能·机器学习·回归·scikit-learn·性能评估
HyperAI超神经18 小时前
突破1200°C高温性能极限!北京科技大学用机器学习合成24种耐火高熵合金,室温延展性极佳
人工智能·深度学习·机器学习·数据集·ai4s·材料学·合金
阿里-于怀19 小时前
5分钟科普:AI网关是什么?应用场景是什么?有没有开源的选择?
机器学习