反其道而行的SAP商业AI

最近SAP的首席AI官Dr. Philipp Herzig发了一则领英动态,介绍SAP在生成式AI领域的最新进展,特别是如何利用这些技术改进企业数据处理。与ChatGPT等大语言模型(LLM)主要处理非结构化文本和图像不同,SAP正在开发一个专为处理结构化业务数据的基础模型。LLM在处理表格数据时常表现不佳,而SAP的模型则专注于企业资源规划(ERP)和其他数据库中的结构化数据。通过预训练和细微调整,SAP的模型在预测和分类任务中优于传统的狭义AI模型。这一模型能够快速适应不同的业务场景,降低了实施和维护成本,提高了数据处理的效率和准确性。

与ChatGPT等大语言模型的区别

  1. 数据类型:

LLM:主要处理非结构化数据,如文本和图像。

SAP模型:专注于结构化数据,如ERP系统中的表格数据。

  1. 性能差异:

LLM:在处理结构化数据时表现不佳,预测准确性较低,容易产生幻觉。

SAP模型:在特定任务中经过细微调整后,预测准确性优于狭义AI模型。

  1. 适应性:

LLM:需要大量的文本数据进行预训练,并且在处理新的结构化数据任务时效果有限。

SAP模型:通过预训练和轻量化调整,可以快速适应新的业务场景,甚至在数据有限的情况下也能提供高质量的预测。

具体的例子如下

ERP数据处理:

SAP的模型通过处理ERP系统中的结构化数据,如财务数据和库存管理数据,提供准确的预测和分类。举例来说,在创建复杂的业务对象时,SAP的模型可以通过AI辅助用户进行高效创建,减少了人为错误和时间成本。

隐私保护:

SAP模型在数据隐私和安全性方面也具有优势。它通过固定的输入输出模式,确保了数据仅在特定客户范围内使用,并采用差分隐私和联邦学习等技术,进一步保障数据的安全。

通过这些技术和方法,SAP的生成式AI模型不仅弥补了LLM在处理结构化数据上的不足,还为企业提供了更高效、更安全的数据处理解决方案。这种创新将进一步推动企业智能化转型,提高业务运营的效率和准确性。

原文地址:https://community.sap.com/t5/technology-blogs-by-sap/leveraging-generative-ai-advancements-for-linked-business-data/ba-p/13721158

相关推荐
阿坡RPA4 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049934 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心4 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI6 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c7 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2058 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清8 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh8 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员8 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物8 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技