【线性代数】【二】2.7 矩阵的秩

文章目录


前言

在前面的内容中,我们已经陆陆续续地给出了秩的概念。本文可以看成是对以往概念与性质的总结,那专门针对秩进行分析。


一、向量组的秩

在笔记2.2中,我们学习了极大线性无关组的概念。现在,我们给出向量组的秩定义:一组向量的秩表示该组向量的极大线性无关组的向量数量。结合向量空间的维数定义,可知由该组向量张成的向量空间的维数等于秩。

当我们往向量组中添加线性无关的向量时,秩也会增加。但是我们可以一直重复这个过程来增加秩吗?换言之,我们总能找到一个向量,与原向量组线性无关吗?

答案当然是否定的。由 n n n维向量组成的一组向量,其秩的上界为 n n n 。因为 n n n维空间中任意n个线性无关的向量构成该空间的一组基。因此当增加到大于 n n n个向量时,新增加的向量一定可以被之前 n n n个向量线性表示。

二、矩阵的秩

矩阵的秩即为矩阵列向量组的秩,也等于矩阵行向量组的秩,也等于其化为行最简矩阵时主元的数量。下面,我们分析几种常见操作对矩阵秩的影响。

1)乘上一个矩阵

r ( A B ) ⩽ r ( A ) r(\bm{AB})\leqslant r(\bm{A}) r(AB)⩽r(A)

这个性质在笔记2.6中已有说明,即 A B \bm{AB} AB的列向量为 A \bm{A} A的列向量的线性组合,而线性组合得到的向量与原向量组是线性相关的,因此无法增加线性无关的列向量数量。当 B \bm{B} B为可逆矩阵时,等号一定成立,证明可见笔记2.6。

2)加上一个矩阵

r ( A + B ) ⩽ r ( A ) + r ( B ) r(\bm{A}+\bm{B})\leqslant r(\bm{A})+r(\bm{B}) r(A+B)⩽r(A)+r(B)

矩阵相加,相当于将两个矩阵的列向量做了一个简单的线性组合,同样的,线性组合无法增加与两原矩阵的列向量线性无关的向量。

3)增广矩阵

r ( A + B ) ⩽ r ( [ A , B ] ) ⩽ r ( A ) + r ( B ) r(\bm{A}+\bm{B})\leqslant r([\bm{A,B}])\leqslant r(\bm{A})+r(\bm{B}) r(A+B)⩽r([A,B])⩽r(A)+r(B)

矩阵相加即对增广矩阵列向量进行线性组合,因此秩小于等于增广矩阵。增广矩阵的增加的线性无关列向量不会超过 r ( B ) r(\bm{B}) r(B)。

max ⁡ { r ( A ) , r ( B ) } ⩽ r ( [ A , B ] ) \max\{r(\bm{A}),r(\bm{B})\}\leqslant r([\bm{A,B}]) max{r(A),r(B)}⩽r([A,B])

增广矩阵不会使得原本线性无关的向量变成线性相关,因此不会减少秩。

三、矩阵的可逆性与秩

因为矩阵的秩等于行最简的主元数,而n阶可逆矩阵的行等价于n阶单位矩阵,即主元素等于n。因此,方阵的秩等于列数时必然可逆。

至此,我们得到了一组等价关系:

n阶方阵可逆    ⟺    \iff ⟺行等价于n阶单位阵    ⟺    \iff ⟺秩等于n    ⟺    \iff ⟺零空间维度为0,齐次方程组只有零解    ⟺    \iff ⟺矩阵的列(行)向量均线性无关


总结

之前虽然已经提到秩的定义并推导了一些性质,但还不够全面。本文可以算是对矩阵的秩的一点简单的查缺补漏吧。

相关推荐
_Li.2 分钟前
机器学习-特征选择
人工智能·python·机器学习
囊中之锥.3 分钟前
机器学习第一部分---线性回归
人工智能·机器学习·线性回归
囊中之锥.40 分钟前
机器学习第三部分---决策树
人工智能·决策树·机器学习
梦帮科技2 小时前
Scikit-learn特征工程实战:从数据清洗到提升模型20%准确率
人工智能·python·机器学习·数据挖掘·开源·极限编程
dhdjjsjs2 小时前
Day43 PythonStudy
人工智能·机器学习
FL16238631292 小时前
传送带异物检测玻璃碴子检测数据集VOC+YOLO格式156张1类别
深度学习·yolo·机器学习
子夜江寒3 小时前
逻辑森林与贝叶斯算法简介
算法·机器学习
闻缺陷则喜何志丹3 小时前
【计算几何 线性代数】仿射矩阵的秩及行列式
c++·线性代数·数学·矩阵·计算几何·行列式·仿射矩阵得秩
我不是小upper3 小时前
从理论到代码:随机森林 + GBDT+LightGBM 融合建模解决回归问题
人工智能·深度学习·算法·随机森林·机器学习·回归
黑客思维者4 小时前
机器学习012:监督学习【回归算法】(对比)-- AI预测世界的“瑞士军刀”
人工智能·学习·机器学习·回归·逻辑回归