TensorFlow和Pytorch是什么?干什么用的?

TensorFlow和Pytorch 都是机器学习框架 ,允许用户自定义开发机器学习模型(利用已经实现好的神经网络层)。

1. 加载和预处理数据

  • 加载数据:使用合适的库(如 Pandas、Numpy 或 TensorFlow 的数据处理 API)从文件或数据库中加载数据。
  • 预处理数据:对数据进行预处理,包括数据清洗、缺失值处理、归一化、标准化等。预处理还包括将数据划分为训练集、验证集和测试集。

2. 定义构建模型

  • 定义输入:确定模型的输入维度,即特征的数量。
  • 定义神经网络层 :使用框架提供的层(如 tf.keras.layers 或 PyTorch 的 nn.Module)来构建模型架构。这包括选择合适的层类型(如全连接层、卷积层、循环层等),以及设置层的参数(如激活函数、输出维度等)。

3. 编译模型

  • 定义损失函数:选择一个适当的损失函数来衡量模型预测与实际标签之间的差距。常见的损失函数包括均方误差(MSE)、交叉熵损失等。
  • 选择优化器:定义一个优化器来更新模型的权重。常用的优化器有 SGD、Adam、RMSprop 等。
  • 设置评估指标:选择一些评估指标来监控模型在训练过程中的表现。例如,对于分类任务,可以使用准确率(accuracy)。

4. 训练模型

  • 训练数据集:将训练数据集传递给模型进行训练。
  • 训练轮数:指定模型训练的轮数(epoch),即整个数据集被遍历的次数。
  • 批量大小:定义每次训练时使用的样本数量(batch size)。

5. 评测模型

  • 测试数据集:使用测试数据集来评估模型的泛化能力。
  • 查看评测指标:计算模型在测试数据集上的评估指标,如准确率、精确率、召回率等,以确定模型的性能。
相关推荐
小毅&Nora8 分钟前
【人工智能】人工智能发展历程全景解析:从图灵测试到大模型时代(含CNN、Q-Learning深度实践)
人工智能·cnn·q-learning
人工智能技术咨询.11 分钟前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动
人工智能·transformer
Mintopia12 分钟前
🧭 Claude Code 用户工作区最佳实践指南
前端·人工智能·claude
Caven7715 分钟前
【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide
人工智能·机器学习
Mintopia19 分钟前
🌐 多用户并发请求下的 WebAIGC 服务稳定性技术保障
javascript·人工智能·自动化运维
是店小二呀1 小时前
Doubao-Seed-Code 打造一个专属的规划平台
人工智能·aigc·doubao
幂律智能2 小时前
幂律智能入选“AI100应用标杆”,赋能产业发展新范式
人工智能·百度
咚咚王者3 小时前
人工智能之数据分析 numpy:第十章 副本视图
人工智能·数据分析·numpy
Dev7z3 小时前
让阅卷不再繁琐:图像识别与数据分析提升智能答题卡评分效率
人工智能·计算机视觉
咚咚王者3 小时前
人工智能之数据分析 numpy:第十一章 字符串与字节交换
人工智能·数据分析·numpy