mmsegmentation 自定义模型报错:KeyError: ‘EncoderDecoder is not in the model registry

mmsegmentation 自定义模型报错:KeyError: 'EncoderDecoder is not in the model registry'

在使用 `mmsegmentation` 自定义模型时,可能会遇到以下错误:

复制代码
KeyError: 'EncoderDecoder is not in the model registry. Please check whether the value of EncoderDecoder is correct or it was registered as expected. More details can be found at https://mmengine.readthedocs.io/en/latest/advanced_tutorials/config.html#import-the-custom-module'

这通常是由于模型内部初始化问题引起的。

解决方法

在配置文件中添加以下内容:

```python

custom_imports = dict(

imports=['mmseg.models.backbones.rdt_fastvit'],

allow_failed_imports=False

)

修改后的配置文件示例:

复制代码
# model settings
norm_cfg = dict(type='SyncBN', requires_grad=True)
data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255
)
custom_imports = dict(
    imports=['mmseg.models.backbones.rdt_fastvit'],
    allow_failed_imports=False
)
model = dict(
    type='EncoderDecoder',
    data_preprocessor=data_preprocessor,
    backbone=dict(
        type='RDT_FastViT',
        model_name='rdt_sa12_s',
        pretrained=False,
        checkpoint_path='/path/rdt_fastvit_sa12.pth.tar',
        num_classes=1000,
        in_chans=3,
        drop_rate=0.1,
        global_pool='avg',
        retina_size=512,
        patch_number=4,
        use_residual=True,
        use_retina_field=False
    ),
    neck=dict(
        type='FPN',
        in_channels=[64, 128, 256, 512],
        out_channels=256,
        num_outs=4
    ),
    decode_head=dict(
        type='FPNHead',
        in_channels=[256, 256, 256, 256],
        in_index=[0, 1, 2, 3],
        feature_strides=[4, 8, 16, 32],
        channels=128,
        dropout_ratio=0.1,
        num_classes=19,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)
    ),
    train_cfg=dict(),
    test_cfg=dict(mode='whole')
)

添加后,再次运行会显示详细的出错位置,例如:

复制代码
ImportError: cannot import name 'PatchEmbedCifar' from 'timm.layers.patch_embed' (/root/anaconda3/envs/mmseg/lib/python3.9/site-packages/timm/layers/patch_embed.py)
相关推荐
EasonZzzzzzz3 分钟前
计算机视觉——相机标定
人工智能·数码相机·计算机视觉
猿小猴子12 分钟前
主流 AI IDE 之一的 Cursor 介绍
ide·人工智能·cursor
要努力啊啊啊13 分钟前
Reranker + BM25 + FAISS 构建高效的多阶段知识库检索系统一
人工智能·语言模型·自然语言处理·faiss
EasyDSS20 分钟前
国标GB28181设备管理软件EasyGBS远程视频监控方案助力高效安全运营
网络·人工智能
蓝婷儿23 分钟前
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
开发语言·python·学习
春末的南方城市29 分钟前
港科大&快手提出统一上下文视频编辑 UNIC,各种视频编辑任务一网打尽,还可进行多项任务组合!
人工智能·计算机视觉·stable diffusion·aigc·transformer
小喵喵生气气32 分钟前
Python60日基础学习打卡Day46
深度学习·机器学习
叶子2024221 小时前
学习使用YOLO的predict函数使用
人工智能·学习·yolo
chao_7891 小时前
链表题解——两两交换链表中的节点【LeetCode】
数据结构·python·leetcode·链表
dmy1 小时前
n8n内网快速部署
运维·人工智能·程序员