PyTorch加载数据集

PyTorch加载数据集主要涉及两个类------Dataset和Dataloader

Dataset类是提供一种方式去获取数据及其对应的真实的label值,Dataset类是需要我们自己写的。

实现的功能:一如何获取每一个数据及其label;二告诉我们总共有多少个数据

Dataloader类是为后面的网络提供不同的数据形式

举个例子:以垃圾分类来举例,其中垃圾就代表我们所要处理的数据。Dataset类的作用是将一堆垃圾进行分类,并在每一类中对垃圾进行0,1,2,......的编号,并获取具体的label值。Dataloader类的作用是将Dataset类编码之后的数据按照一定的大小(比如batch-size)进行打包

相关推荐
YelloooBlue8 分钟前
深度学习 SOP: conda通过命令快速构建指定版本tensorflow gpu环境。
深度学习·conda·tensorflow
AI即插即用23 分钟前
即插即用系列 | AAAI 2026 WaveFormer: 当视觉建模遇上波动方程,频率-时间解耦的新SOTA
图像处理·人工智能·深度学习·神经网络·计算机视觉·视觉检测
轻览月23 分钟前
【DL】复杂卷积神经网络Ⅰ
人工智能·神经网络·cnn
逄逄不是胖胖32 分钟前
《动手学深度学习》-55-2RNN的简单实现
人工智能·深度学习
咚咚王者41 分钟前
人工智能之核心技术 深度学习 第四章 循环神经网络(RNN)与序列模型
人工智能·rnn·深度学习
机 _ 长2 小时前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
美狐美颜sdk2 小时前
抖动特效在直播美颜sdk中的实现方式与优化思路
前端·图像处理·人工智能·深度学习·美颜sdk·直播美颜sdk·美颜api
大学生小郑3 小时前
sensor成像的原理
图像处理·音视频·视频
Yeats_Liao3 小时前
异步推理架构:CPU-NPU流水线设计与并发效率提升
python·深度学习·神经网络·架构·开源
哥布林学者3 小时前
吴恩达深度学习课程五:自然语言处理 第三周:序列模型与注意力机制(一)seq2seq 模型
深度学习·ai