数据采集工具之Flume

本文主要实现数据到datahub的采集过程

1、下载

Index of /dist/flume/1.11.0

datahub插件下载

https://aliyun-datahub.oss-cn-hangzhou.aliyuncs.com/tools/aliyun-flume-datahub-sink-2.0.9.tar.gz

2、安装

复制代码
$ tar aliyun-flume-datahub-sink-x.x.x.tar.gz
$ cd aliyun-flume-datahub-sink-x.x.x
$ mkdir ${FLUME_HOME}/plugins.d
$ mv aliyun-flume-datahub-sink ${FLUME_HOME}/plugins.d

3、编写配置文件

复制代码
# A single-node Flume configuration for DataHub
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /soft/data/test.csv
# Describe the sink
a1.sinks.k1.type = com.aliyun.datahub.flume.sink.DatahubSink
a1.sinks.k1.datahub.accessId = 2Z8tAOpDPBm5LEkA
a1.sinks.k1.datahub.accessKey = Tlupsw2G0PdKGCRyPLucHjeESqoCla
a1.sinks.k1.datahub.endPoint = https://datahub.cn-beijing-tbdg-d01.dh.res.bigdata.tbea.com
a1.sinks.k1.datahub.project = bigdata
a1.sinks.k1.datahub.topic = txt_flume
a1.sinks.k1.serializer = DELIMITED
a1.sinks.k1.serializer.delimiter = ,
a1.sinks.k1.serializer.fieldnames = id,name,gender,salary,my_time,decimal
a1.sinks.k1.serializer.charset = UTF-8
a1.sinks.k1.datahub.retryTimes = 5
a1.sinks.k1.datahub.retryInterval = 5
a1.sinks.k1.datahub.batchSize = 100
a1.sinks.k1.datahub.batchTimeout = 5
a1.sinks.k1.datahub.enablePb = true
a1.sinks.k1.datahub.compressType = DEFLATE
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 10000
a1.channels.c1.transactionCapacity = 10000
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

4、启动

复制代码
flume-ng agent -n a1 -c conf -f ./conf/flume-txt2datahub.conf -Dflume.root.logger=INFO,console

Q:启动报错

复制代码
[root@hadoop2 apache-flume-1.11.0-bin]# flume-ng agent -n a1 -c conf -f ./conf/flume-txt2datahub.conf -Dflume.root.logger=INFO,console
Info: Including Hive libraries found via () for Hive access
+ exec /soft/jdk1.8.0_421/bin/java -Xmx20m -Dflume.root.logger=INFO,console -cp '/soft/apache-flume-1.11.0-bin/conf:/soft/apache-flume-1.11.0-bin/lib/*:/soft/apache-flume-1.11.0-bin/plugins.d/aliyun-flume-datahub-sink/lib/*:/soft/apache-flume-1.11.0-bin/plugins.d/aliyun-flume-datahub-sink/libext/*:/lib/*' -Djava.library.path= org.apache.flume.node.Application -n a1 -f ./conf/flume-txt2datahub.conf
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/soft/apache-flume-1.11.0-bin/lib/log4j-slf4j-impl-2.18.0.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/soft/apache-flume-1.11.0-bin/plugins.d/aliyun-flume-datahub-sink/libext/slf4j-log4j12-1.6.2.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory]
Exception in thread "main" java.lang.NoSuchMethodError: com.google.common.base.Preconditions.checkNotNull(Ljava/lang/Object;Ljava/lang/String;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
        at com.aliyun.datahub.flume.sink.DatahubSink.configure(DatahubSink.java:59)
        at org.apache.flume.conf.Configurables.configure(Configurables.java:41)
        at org.apache.flume.node.AbstractConfigurationProvider.loadSinks(AbstractConfigurationProvider.java:456)
        at org.apache.flume.node.AbstractConfigurationProvider.getConfiguration(AbstractConfigurationProvider.java:109)
        at org.apache.flume.node.Application.main(Application.java:491)

A:删除Flume lib文件夹中的guava jar包文件,重新启动

相关推荐
Hello.Reader1 小时前
用 Doris 托底实时明细与聚合Flink CDC Pipeline 的 Doris Sink 实战
大数据·flink
程途拾光1581 小时前
用流程图优化工作流:快速识别冗余环节,提升效率
大数据·论文阅读·人工智能·流程图·论文笔记
武子康1 小时前
大数据-152 Apache Druid 集群模式 [下篇] 低内存集群实操:JVM/DirectMemory与启动脚本
大数据·后端·nosql
路人与大师2 小时前
解密“精准劝阻”:基于大数据与AI的反诈骗智能体系统深度解析
大数据·人工智能
老蒋新思维2 小时前
借刘润之智,在 IP+AI 时代构筑战略 “增长方舟”|创客匠人
大数据·网络·人工智能·网络协议·tcp/ip·创客匠人·知识变现
打码人的日常分享2 小时前
智慧楼宇资料合集,智慧城市智慧社区智慧园区
大数据·网络·人工智能
wangqiaowq3 小时前
FLINK CDC 的学习
大数据
欢聚赢销CRM3 小时前
从“各自为战“到“数据协同“:销采一体化CRM正在重构供应链竞争力
大数据·人工智能·重构·数据分析
云边有个稻草人4 小时前
大数据时代时序数据库选型指南:为何Apache IoTDB是最优解
大数据·时序数据库·apache iotdb
kuankeTech6 小时前
大豆进口管理新突破:外贸ERP软件全流程数字化解决方案
大数据·低代码·开源软件·软件开发·erp