【递归 + 记忆化搜索优化】力扣494. 目标和

给你一个非负整数数组 nums 和一个整数 target 。

向数组中的每个整数前添加 '+' 或 '-' ,然后串联起所有整数,可以构造一个 表达式 :

例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1" 。

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3

输出:5

解释:一共有 5 种方法让最终目标和为 3 。

-1 + 1 + 1 + 1 + 1 = 3

+1 - 1 + 1 + 1 + 1 = 3

+1 + 1 - 1 + 1 + 1 = 3

+1 + 1 + 1 - 1 + 1 = 3

+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1

输出:1

方法一:递归

cpp 复制代码
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        //正数和 - 要加"-"号的元素和 = target;
        //正数和 - (未加符号元素总和 - 正数和)= target;
        // 2正数和 - 未加符号元素总和 = target;
        // 正数和 = (target + 未加符号元素总和)/ 2;

        int posNum;
        int sum = 0;
        for(int i = 0; i < nums.size(); i++){
            sum += nums[i];
        }

        int sum2 = target + sum;
        if(sum2 % 2 == 1 || sum2 < 0){
            return 0;
        }
        sum2 /= 2;

        auto def = [&](auto &&def, int i, long long c){
            if(i < 0){
                if(c == 0) return 1;
                else return 0;
            }

            if(c - nums[i] < 0){
                return def(def, i-1, c);
            }
            return def(def, i-1, c) + def(def, i-1, c - nums[i]);
        };
        return def(def, nums.size()-1, sum2);
    }
};

正数和 - 要加"-"号的元素和 = target;

正数和 - (未加符号元素总和 - 正数和)= target;

2正数和 - 未加符号元素总和 = target;

正数和 = (target + 未加符号元素总和)/ 2;

所以我们只需要先计算出sum2,然后来从后往前,根据判断这个元素是否是正数,如果是正数的话,正数和 - 该元素,如果不是的话,正数和不变,继续往前选择元素是否是正数的情况。该方法在时间复杂度上较高,可以考虑使用记忆话搜索避免重复运算。

方法二:记忆化搜索

cpp 复制代码
class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        //正数和 - 要加"-"号的元素和 = target;
        //正数和 - (未加符号元素总和 - 正数和)= target;
        // 2正数和 - 未加符号元素总和 = target;
        // 正数和 = (target + 未加符号元素总和)/ 2;

        int posNum;
        int sum = 0;
        for(int i = 0; i < nums.size(); i++){
            sum += nums[i];
        }

        int sum2 = target + sum;
        if(sum2 % 2 == 1 || sum2 < 0){
            return 0;
        }
        sum2 /= 2;

        vector<vector<int>> memo(nums.size(), vector<int>(sum2+1, -1));
        auto def = [&](auto &&def, int i, long long c){
            if(i < 0){
                if(c == 0) return 1;
                else return 0;
            }
            int& res = memo[i][c];

            if(res != -1){
                return res;
            }

            if(c - nums[i] < 0){
                return def(def, i-1, c);
            }
            return res = def(def, i-1, c) + def(def, i-1, c - nums[i]);
        };
        return def(def, nums.size()-1, sum2);
    }
};

定义了一个二维向量memo来记忆在第i个元素时,如果还剩下c的时候,有多少种组合方式进行储存,当其他递归运算到这种情况的时候,就不需要继续递归下去,直接使用储存好的数值就行。优化后,计算所有案例时间由499ms -> 7ms。

相关推荐
那个村的李富贵13 小时前
CANN加速下的AIGC“即时翻译”:AI语音克隆与实时变声实战
人工智能·算法·aigc·cann
power 雀儿14 小时前
Scaled Dot-Product Attention 分数计算 C++
算法
琹箐14 小时前
最大堆和最小堆 实现思路
java·开发语言·算法
renhongxia115 小时前
如何基于知识图谱进行故障原因、事故原因推理,需要用到哪些算法
人工智能·深度学习·算法·机器学习·自然语言处理·transformer·知识图谱
坚持就完事了15 小时前
数据结构之树(Java实现)
java·算法
算法备案代理15 小时前
大模型备案与算法备案,企业该如何选择?
人工智能·算法·大模型·算法备案
赛姐在努力.15 小时前
【拓扑排序】-- 算法原理讲解,及实现拓扑排序,附赠热门例题
java·算法·图论
野犬寒鸦16 小时前
从零起步学习并发编程 || 第六章:ReentrantLock与synchronized 的辨析及运用
java·服务器·数据库·后端·学习·算法
霖霖总总16 小时前
[小技巧66]当自增主键耗尽:MySQL 主键溢出问题深度解析与雪花算法替代方案
mysql·算法
rainbow688916 小时前
深入解析C++STL:map与set底层奥秘
java·数据结构·算法