回归预测|基于麻雀优化深度神经网络的数据回归预测Matlab程序SSA-DNN 多特征输入单输出 含基础深度神经网络DNN

回归预测|基于麻雀优化深度神经网络的数据回归预测Matlab程序SSA-DNN 多特征输入单输出 含基础深度神经网络DNN

文章目录


前言

回归预测|基于麻雀优化深度神经网络的数据回归预测Matlab程序SSA-DNN 多特征输入单输出 含基础深度神经网络DNN

一、SSA-DNN模型

SSA-DNN模型结合了麻雀优化算法(SSA)和深度神经网络(DNN)以优化深度学习模型的性能。下面详细解释这两个部分以及它们如何协同工作。

1. 麻雀优化算法(SSA)

麻雀优化算法(SSA, Sparrow Search Algorithm)是一种基于群体智能的优化算法,模拟麻雀觅食行为。其主要步骤如下:

  • 初始化:随机生成麻雀群体的位置,这些位置表示优化问题中的潜在解。
  • 评估:计算每个麻雀的适应度(即目标函数值),并根据适应度对麻雀进行排名。
  • 更新位置 :根据麻雀的觅食行为和当前位置更新其位置。SSA模拟了麻雀在寻找食物过程中的探索和利用行为,包括:
    • 局部搜索:麻雀在食物丰富区域附近进行更精细的搜索。
    • 全局搜索:麻雀在整个搜索空间中进行广泛的探索以发现新的食物源。
  • 选择和迁移:根据适应度选择优质解,并迁移到新的位置进行进一步搜索,逐步提高解的质量。

2. 深度神经网络(DNN)

深度神经网络(DNN)是一类包含多个隐藏层的人工神经网络,用于捕捉复杂的模式和特征。其主要组成部分包括:

  • 输入层:接收原始数据。
  • 隐藏层:通过层叠的神经元处理数据,层数和神经元数量取决于模型的复杂度。
  • 激活函数:引入非线性变换,使网络能够拟合复杂函数(常用的激活函数有ReLU、Sigmoid、Tanh等)。
  • 输出层:生成最终的预测结果。

SSA-DNN模型的结合与流程

  1. 初始化与配置

    • 初始化SSA算法的麻雀群体,设置DNN的结构和超参数(如层数、每层的神经元数量、学习率等)。
  2. 优化阶段

    • 初始化麻雀群体的位置:每个麻雀的位置表示DNN模型的一个超参数配置或权重初始化。
    • 评估适应度:通过训练DNN模型并计算性能指标(如准确率、损失值等)来评估每个麻雀的位置。
    • 位置更新:利用SSA的搜索机制更新每个麻雀的位置,调整DNN模型的超参数或权重。
    • 迭代优化:不断迭代更新位置,通过局部和全局搜索机制改进DNN的参数配置。
  3. 模型训练与测试

    • 在SSA优化的过程中,DNN的结构或参数经过不断调整,直到找到最优配置。
    • 使用优化后的DNN模型进行训练,验证模型在训练集和测试集上的表现,确保其泛化能力和性能。
  4. 结果分析

    • 分析优化后DNN模型的性能,评估其在实际任务中的表现。

总结:SSA-DNN模型利用麻雀优化算法优化深度神经网络的超参数或权重,从而提高DNN的性能。SSA提供了一种有效的全局搜索机制,帮助找到最佳的网络配置,而DNN则利用深度学习的强大能力进行数据建模和预测。

二、实验结果

SSA优化的DNN结果

未优化的DNN结果

三、核心代码

matlab 复制代码
%%  导入数据
res = xlsread('数据集.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test  = T_test;

%%  转置以适应模型
p_train = p_train'; p_test = p_test';
t_train = t_train'; t_test = t_test';

四、代码获取

私信即可 25

五、总结

包括但不限于

优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM--Attention,VMD--LSTM,PCA--BP等等

用于数据的分类,时序,回归预测。

多特征输入,单输出,多输出

相关推荐
Evand J13 小时前
【MATLAB例程】到达角度定位(AOA),平面环境多锚点定位(自适应基站数量),动态轨迹使用EKF滤波优化。附代码下载链接
开发语言·matlab·平面·滤波·aoa·到达角度
天一生水water18 小时前
均值回归(配对交易)策略
均值算法·回归·kotlin·量化交易
彩云回18 小时前
LOESS回归
人工智能·机器学习·回归·1024程序员节
文火冰糖的硅基工坊18 小时前
[人工智能-大模型-58]:模型层技术 - 深度神经网络的本质是一个复杂的复合数学函数
人工智能·神经网络·算法·dnn
极客数模21 小时前
2025年MathorCup 大数据竞赛明日开赛,注意事项!论文提交规范、模板、承诺书正确使用!2025年第六届MathorCup数学应用挑战赛——大数据竞赛
大数据·python·算法·matlab·图论·比赛推荐
机器学习之心21 小时前
MATLAB基于灰色聚类-正态云的地铁牵引系统健康状态综合评估
matlab·灰色聚类·正态云
Matlab程序猿小助手21 小时前
【MATLAB源码-第303期】基于matlab的蒲公英优化算法(DO)机器人栅格路径规划,输出做短路径图和适应度曲线.
开发语言·算法·matlab·机器人·kmeans
简简单单做算法2 天前
基于图像小波变换的多尺度自适应双边滤波matlab仿真
matlab·多尺度·图像小波变换·自适应双边滤波
lzptouch2 天前
线性回归算法
算法·回归·线性回归
程高兴2 天前
LCC-S型磁耦合谐振无线电传输系统实现恒压输出simulink
matlab