3D靓图!CEEMDAN-Kmeans-VMD-CNN-BiLSTM-Attention双重分解卷积双向长短期注意力多元时序预测

3D靓图!CEEMDAN-Kmeans-VMD-CNN-BiLSTM-Attention双重分解卷积双向长短期注意力多元时序预测

目录

效果一览










基本介绍

1.Matlab实现CEEMDAN-Kmeans-VMD-CNN-BiLSTM-Attentionr融合K均值聚类的数据双重分解+卷积双向长短期记忆神经网络+注意力机制多元时间序列预测(完整源码和数据)

2.CEEMDAN分解,计算样本熵,根据样本熵进行kmeans聚类,调用VMD对高频分量二次分解, VMD分解的高频分量与前分量作为卷积双向长短期记忆神经网络注意力机制模型的目标输出分别预测后相加。

3.多变量单输出,考虑历史特征的影响!评价指标包括R2、MAE、RMSE、MAPE等。

4.算法新颖。⑴ CEEMDAN-Kmeans-VMD-CNN-BiLSTM-Attention模型处理高频数据,具有更高的准确率,能够跟踪数据的趋势以及变化。⑵ VMD 模型处理非线性、非平稳以及复杂的数据,表现得比EMD 系列更好,因此将重构的数据通过VMD 模型分解,提高了模型的准确度。

5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行主文件一键出图。

6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

参考文献

程序设计

  • 完整程序和数据获取方式私信博主回复**【独家原创】基于APO-Transformer多变量回归预测【24年新算法】 (多输入单输出)Matlab代码**。
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end

 
%%  参数设置
options = trainingOptions('adam', ...      % Adam 梯度下降算法
    'MaxEpochs', 100, ...                  % 最大训练次数 
    'InitialLearnRate', 0.01, ...          % 初始学习率为0.01
    'LearnRateSchedule', 'piecewise', ...  % 学习率下降
    'LearnRateDropFactor', 0.1, ...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 70, ...         % 经过训练后 学习率为 0.01*0.1
    'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集
    'Verbose', 1);
figure
subplot(2,1,1)
plot(T_train,'k--','LineWidth',1.5);
hold on
plot(T_sim_a','r-','LineWidth',1.5)
legend('真实值','预测值')

xlabel('样本点')
ylabel('数值')
subplot(2,1,2)
bar(T_sim_a'-T_train)


disp('............测试集误差指标............')
[mae2,rmse2,mape2,error2]=calc_error(T_test,T_sim_b');
fprintf('\n')


figure
subplot(2,1,1)
plot(T_test,'k--','LineWidth',1.5);
hold on
plot(T_sim_b','b-','LineWidth',1.5)
legend('真实值','预测值')

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/127931217 \[2\] https://blog.csdn.net/kjm13182345320/article/details/127418340

相关推荐
WeiJingYu.5 天前
K-Means 聚类
机器学习·kmeans·聚类
dlraba8026 天前
机器学习-----K-means算法介绍
算法·机器学习·kmeans
赴3356 天前
机器学习 K-Means聚类 无监督学习
机器学习·kmeans·聚类
星期天要睡觉8 天前
机器学习——KMeans聚类算法(算法原理+超参数详解+实战案例)
人工智能·机器学习·kmeans·聚类
_Orch1d13 天前
初识无监督学习-聚类算法中的K-Means算法,从原理公式到简单代码实现再到算法优化
python·学习·算法·机器学习·numpy·kmeans·聚类
霜绛18 天前
机器学习笔记(四)——聚类算法KNN、Kmeans、Dbscan
笔记·算法·机器学习·kmeans·聚类
wh_xia_jun1 个月前
K-means 聚类在肺炎患者分型中的应用(简单示例)
算法·kmeans·聚类
applebomb1 个月前
没合适的组合wheel包,就自行编译flash_attn吧
python·ubuntu·attention·flash
kngines1 个月前
【字节跳动】数据挖掘面试题0007:Kmeans原理,何时停止迭代
人工智能·数据挖掘·kmeans
CS创新实验室2 个月前
研读论文《Attention Is All You Need》(17)
大模型·transformer·attention·注意力