深度学习·神经网络初步

神经网络

  • 输入层+隐藏层+输出层
  • 隐藏层有不同的种类

神经网络的术语

n [ i ] : n^{[i]}: n[i]:第i层的神经元个数
z [ i ] , w [ i ] , b [ i ] z^{[i]},w^{[i]},b^{[i]} z[i],w[i],b[i]:第i层的参数
a [ i ] : a^{[i]}: a[i]:第i层的激活函数

神经网络的原理

前向传播

z [ l + 1 ] = W [ l + 1 ] A [ l ] + b [ l + 1 ] z^{[l+1]}=W^{[l+1]}A^{[l]}+b^{[l+1]} z[l+1]=W[l+1]A[l]+b[l+1]

其中:

  • 矩阵 A [ l ] A^{[l]} A[l]是第 l l l层的输出矩阵(等价于第 l + 1 l+1 l+1层的输入矩阵),规模大小为( n [ l ] n^{[l]} n[l]x m m m)
  • 矩阵 W W W是第 l l l层的权重矩阵,规模大小为( n [ l + 1 ] n^{[l+1]} n[l+1]x n [ l ] n^{[l]} n[l])

矩阵A的实际含义是:列是样本,行是特征

矩阵W的实际含义是:看作当前层神经元的权重向量(这是一个行向量)组成的列向量

反向传播

提示:
J ( w , b ) J(w,b) J(w,b)等价于 J ( y , a [ l + 1 ] ) J(y,a^{[l+1]}) J(y,a[l+1])

利用链式法则求导,每次反向传播 z [ l + 1 ] z^{[l+1]} z[l+1]

推导过程如下

超参数和参数

  • 参数:w,b
  • 超参数:学习率, λ \lambda λ,神经元的个数,神经网络的层数,不同的层等,正则化方法

正则化

L2-正则化

公式与线性回归一致,只不过对矩阵 W W W求范数,需要计算 W W W中所有权重的和np.sum

Dropout正则化(反向随机失活)

随机丢弃一些神经元(输出结果置0)

表现在代码上就是生成随机矩阵作为掩码与输出矩阵相乘

相关推荐
阿坡RPA3 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049933 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心3 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI5 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c6 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得2056 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清7 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh7 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员7 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物7 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技