深度学习·神经网络初步

神经网络

  • 输入层+隐藏层+输出层
  • 隐藏层有不同的种类

神经网络的术语

n [ i ] : n^{[i]}: n[i]:第i层的神经元个数
z [ i ] , w [ i ] , b [ i ] z^{[i]},w^{[i]},b^{[i]} z[i],w[i],b[i]:第i层的参数
a [ i ] : a^{[i]}: a[i]:第i层的激活函数

神经网络的原理

前向传播

z [ l + 1 ] = W [ l + 1 ] A [ l ] + b [ l + 1 ] z^{[l+1]}=W^{[l+1]}A^{[l]}+b^{[l+1]} z[l+1]=W[l+1]A[l]+b[l+1]

其中:

  • 矩阵 A [ l ] A^{[l]} A[l]是第 l l l层的输出矩阵(等价于第 l + 1 l+1 l+1层的输入矩阵),规模大小为( n [ l ] n^{[l]} n[l]x m m m)
  • 矩阵 W W W是第 l l l层的权重矩阵,规模大小为( n [ l + 1 ] n^{[l+1]} n[l+1]x n [ l ] n^{[l]} n[l])

矩阵A的实际含义是:列是样本,行是特征

矩阵W的实际含义是:看作当前层神经元的权重向量(这是一个行向量)组成的列向量

反向传播

提示:
J ( w , b ) J(w,b) J(w,b)等价于 J ( y , a [ l + 1 ] ) J(y,a^{[l+1]}) J(y,a[l+1])

利用链式法则求导,每次反向传播 z [ l + 1 ] z^{[l+1]} z[l+1]

推导过程如下

超参数和参数

  • 参数:w,b
  • 超参数:学习率, λ \lambda λ,神经元的个数,神经网络的层数,不同的层等,正则化方法

正则化

L2-正则化

公式与线性回归一致,只不过对矩阵 W W W求范数,需要计算 W W W中所有权重的和np.sum

Dropout正则化(反向随机失活)

随机丢弃一些神经元(输出结果置0)

表现在代码上就是生成随机矩阵作为掩码与输出矩阵相乘

相关推荐
新加坡内哥谈技术21 分钟前
解决了“错误的问题”:对AI编程热潮的深度反思
人工智能
渡我白衣1 小时前
未来的 AI 操作系统(八)——灵知之门:当智能系统开始理解存在
人工智能·深度学习·opencv·机器学习·计算机视觉·语言模型·人机交互
夕小瑶1 小时前
Dexmal 原力灵机开源 Dexbotic:具身智能的“Transformers“库来了
大数据·人工智能
飞飞是甜咖啡1 小时前
SPP-CNN解决CNN只能处理固定大小的输入图片
人工智能·神经网络·cnn
xiaoxiaode_shu1 小时前
神经网络基础
人工智能·深度学习·神经网络
小小爱大王2 小时前
AI 编码效率提升 10 倍的秘密:Prompt 工程 + 工具链集成实战
java·javascript·人工智能
盼小辉丶2 小时前
使用CNN构建VAE
深度学习·神经网络·cnn·生成模型
蓝博AI2 小时前
基于卷积神经网络的香蕉成熟度识别系统,resnet50,vgg16,resnet34【pytorch框架,python代码】
人工智能·pytorch·python·神经网络·cnn
CUMT_DJ3 小时前
唐宇迪2025最新机器学习课件——学习心得(1)
人工智能·机器学习
流烟默3 小时前
机器学习中一些场景的模型评估与理解图表
大数据·人工智能·机器学习