深度学习·神经网络初步

神经网络

  • 输入层+隐藏层+输出层
  • 隐藏层有不同的种类

神经网络的术语

n [ i ] : n^{[i]}: n[i]:第i层的神经元个数
z [ i ] , w [ i ] , b [ i ] z^{[i]},w^{[i]},b^{[i]} z[i],w[i],b[i]:第i层的参数
a [ i ] : a^{[i]}: a[i]:第i层的激活函数

神经网络的原理

前向传播

z [ l + 1 ] = W [ l + 1 ] A [ l ] + b [ l + 1 ] z^{[l+1]}=W^{[l+1]}A^{[l]}+b^{[l+1]} z[l+1]=W[l+1]A[l]+b[l+1]

其中:

  • 矩阵 A [ l ] A^{[l]} A[l]是第 l l l层的输出矩阵(等价于第 l + 1 l+1 l+1层的输入矩阵),规模大小为( n [ l ] n^{[l]} n[l]x m m m)
  • 矩阵 W W W是第 l l l层的权重矩阵,规模大小为( n [ l + 1 ] n^{[l+1]} n[l+1]x n [ l ] n^{[l]} n[l])

矩阵A的实际含义是:列是样本,行是特征

矩阵W的实际含义是:看作当前层神经元的权重向量(这是一个行向量)组成的列向量

反向传播

提示:
J ( w , b ) J(w,b) J(w,b)等价于 J ( y , a [ l + 1 ] ) J(y,a^{[l+1]}) J(y,a[l+1])

利用链式法则求导,每次反向传播 z [ l + 1 ] z^{[l+1]} z[l+1]

推导过程如下

超参数和参数

  • 参数:w,b
  • 超参数:学习率, λ \lambda λ,神经元的个数,神经网络的层数,不同的层等,正则化方法

正则化

L2-正则化

公式与线性回归一致,只不过对矩阵 W W W求范数,需要计算 W W W中所有权重的和np.sum

Dropout正则化(反向随机失活)

随机丢弃一些神经元(输出结果置0)

表现在代码上就是生成随机矩阵作为掩码与输出矩阵相乘

相关推荐
Moshow郑锴26 分钟前
人工智能中的(特征选择)数据过滤方法和包裹方法
人工智能
TY-20251 小时前
【CV 目标检测】Fast RCNN模型①——与R-CNN区别
人工智能·目标检测·目标跟踪·cnn
CareyWYR2 小时前
苹果芯片Mac使用Docker部署MinerU api服务
人工智能
失散132 小时前
自然语言处理——02 文本预处理(下)
人工智能·自然语言处理
mit6.8243 小时前
[1Prompt1Story] 滑动窗口机制 | 图像生成管线 | VAE变分自编码器 | UNet去噪神经网络
人工智能·python
sinat_286945193 小时前
AI应用安全 - Prompt注入攻击
人工智能·安全·prompt
迈火4 小时前
ComfyUI-3D-Pack:3D创作的AI神器
人工智能·gpt·3d·ai·stable diffusion·aigc·midjourney
Moshow郑锴5 小时前
机器学习的特征工程(特征构造、特征选择、特征转换和特征提取)详解
人工智能·机器学习
CareyWYR5 小时前
每周AI论文速递(250811-250815)
人工智能
AI精钢5 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网