深度学习·神经网络初步

神经网络

  • 输入层+隐藏层+输出层
  • 隐藏层有不同的种类

神经网络的术语

n [ i ] : n^{[i]}: n[i]:第i层的神经元个数
z [ i ] , w [ i ] , b [ i ] z^{[i]},w^{[i]},b^{[i]} z[i],w[i],b[i]:第i层的参数
a [ i ] : a^{[i]}: a[i]:第i层的激活函数

神经网络的原理

前向传播

z [ l + 1 ] = W [ l + 1 ] A [ l ] + b [ l + 1 ] z^{[l+1]}=W^{[l+1]}A^{[l]}+b^{[l+1]} z[l+1]=W[l+1]A[l]+b[l+1]

其中:

  • 矩阵 A [ l ] A^{[l]} A[l]是第 l l l层的输出矩阵(等价于第 l + 1 l+1 l+1层的输入矩阵),规模大小为( n [ l ] n^{[l]} n[l]x m m m)
  • 矩阵 W W W是第 l l l层的权重矩阵,规模大小为( n [ l + 1 ] n^{[l+1]} n[l+1]x n [ l ] n^{[l]} n[l])

矩阵A的实际含义是:列是样本,行是特征

矩阵W的实际含义是:看作当前层神经元的权重向量(这是一个行向量)组成的列向量

反向传播

提示:
J ( w , b ) J(w,b) J(w,b)等价于 J ( y , a [ l + 1 ] ) J(y,a^{[l+1]}) J(y,a[l+1])

利用链式法则求导,每次反向传播 z [ l + 1 ] z^{[l+1]} z[l+1]

推导过程如下

超参数和参数

  • 参数:w,b
  • 超参数:学习率, λ \lambda λ,神经元的个数,神经网络的层数,不同的层等,正则化方法

正则化

L2-正则化

公式与线性回归一致,只不过对矩阵 W W W求范数,需要计算 W W W中所有权重的和np.sum

Dropout正则化(反向随机失活)

随机丢弃一些神经元(输出结果置0)

表现在代码上就是生成随机矩阵作为掩码与输出矩阵相乘

相关推荐
xingshanchang2 分钟前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
reddingtons1 小时前
Adobe Firefly AI驱动设计:实用技巧与创新思维路径
大数据·人工智能·adobe·illustrator·photoshop·premiere·indesign
CertiK1 小时前
IBW 2025: CertiK首席商务官出席,探讨AI与Web3融合带来的安全挑战
人工智能·安全·web3
Deepoch2 小时前
Deepoc 大模型在无人机行业应用效果的方法
人工智能·科技·ai·语言模型·无人机
Deepoch2 小时前
Deepoc 大模型:无人机行业的智能变革引擎
人工智能·科技·算法·ai·动态规划·无人机
kngines2 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
Binary_ey2 小时前
AR衍射光波导设计遇瓶颈,OAS 光学软件来破局
人工智能·软件需求·光学软件·光波导
昵称是6硬币3 小时前
YOLOv11: AN OVERVIEW OF THE KEY ARCHITECTURAL ENHANCEMENTS目标检测论文精读(逐段解析)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
平和男人杨争争3 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
静心问道3 小时前
XLSR-Wav2Vec2:用于语音识别的无监督跨语言表示学习
人工智能·学习·语音识别