深度学习·神经网络初步

神经网络

  • 输入层+隐藏层+输出层
  • 隐藏层有不同的种类

神经网络的术语

n [ i ] : n^{[i]}: n[i]:第i层的神经元个数
z [ i ] , w [ i ] , b [ i ] z^{[i]},w^{[i]},b^{[i]} z[i],w[i],b[i]:第i层的参数
a [ i ] : a^{[i]}: a[i]:第i层的激活函数

神经网络的原理

前向传播

z [ l + 1 ] = W [ l + 1 ] A [ l ] + b [ l + 1 ] z^{[l+1]}=W^{[l+1]}A^{[l]}+b^{[l+1]} z[l+1]=W[l+1]A[l]+b[l+1]

其中:

  • 矩阵 A [ l ] A^{[l]} A[l]是第 l l l层的输出矩阵(等价于第 l + 1 l+1 l+1层的输入矩阵),规模大小为( n [ l ] n^{[l]} n[l]x m m m)
  • 矩阵 W W W是第 l l l层的权重矩阵,规模大小为( n [ l + 1 ] n^{[l+1]} n[l+1]x n [ l ] n^{[l]} n[l])

矩阵A的实际含义是:列是样本,行是特征

矩阵W的实际含义是:看作当前层神经元的权重向量(这是一个行向量)组成的列向量

反向传播

提示:
J ( w , b ) J(w,b) J(w,b)等价于 J ( y , a [ l + 1 ] ) J(y,a^{[l+1]}) J(y,a[l+1])

利用链式法则求导,每次反向传播 z [ l + 1 ] z^{[l+1]} z[l+1]

推导过程如下

超参数和参数

  • 参数:w,b
  • 超参数:学习率, λ \lambda λ,神经元的个数,神经网络的层数,不同的层等,正则化方法

正则化

L2-正则化

公式与线性回归一致,只不过对矩阵 W W W求范数,需要计算 W W W中所有权重的和np.sum

Dropout正则化(反向随机失活)

随机丢弃一些神经元(输出结果置0)

表现在代码上就是生成随机矩阵作为掩码与输出矩阵相乘

相关推荐
Ma0407136 分钟前
【论文阅读27】-LMPHM:基于因果网络和大语言模型-增强知识图网络的故障推理诊断
人工智能·语言模型·自然语言处理
Nautiluss7 分钟前
一起调试XVF3800麦克风阵列(二)
大数据·人工智能·嵌入式硬件·音频·语音识别·dsp开发
玖日大大10 分钟前
AI智能体聚焦场景化应用,赋能产业创新与效率提升
大数据·人工智能
不惑_11 分钟前
通俗理解多层感知机(MLP)
开发语言·人工智能·python·深度学习
小徐Chao努力16 分钟前
【Langchain4j-Java AI开发】02-模型参数配置与调优
java·开发语言·人工智能
代码代码快快显灵18 分钟前
Windows下Anaconda安装OpenCV以及OpenCV入门
图像处理·人工智能·opencv
码农进厂打螺丝22 分钟前
Stable Diffusion 3.5 FP8:量化优化与部署实践
人工智能·计算机视觉·stable diffusion
Niuguangshuo26 分钟前
DeepDream:窥视神经网络内部世界的梦幻之窗
人工智能·深度学习·神经网络
美狐美颜SDK开放平台30 分钟前
实时直播场景下,美颜sdk美型功能开发的技术难点与解决思路
人工智能·美颜sdk·直播美颜sdk·美颜api·美狐美颜sdk