*算法训练(leetcode)第四十天 | 647. 回文子串、516. 最长回文子序列

刷题记录

  • [*647. 回文子串](#*647. 回文子串)
  • [*516. 最长回文子序列](#*516. 最长回文子序列)

*647. 回文子串

leetcode题目地址

dp[i][j]存储 i-j 的子串是否是回文串。使用额外的计数器对回文串个数进行记录。

单个字符本身就是回文子串。当子串长度大于1时,两侧的字符相同,则需要判断中间的子串是否是回文串。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size()+1, vector<bool>(s.size()+1, false));
        int result = 0;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i] == s[j]){
                    
                    if(j-i<=1){
                        dp[i][j] = true;
                        result++;
                    }

                    else if(dp[i+1][j-1]) {
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

*516. 最长回文子序列

leetcode题目地址

求的是最长回文子序列而不是子串,因此不需要连续。

dp[i][j]存储的是字符串 s 中 i-j 之间的最长回文子序列长度。

  • 当s[i] != s[j]时,dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
  • 当s[i] == s[j]时,有两种情况:
    • j-i <= 1,即j和i指向同一个字符或相邻的两个字符,则最长子序列长度为1(同一字符)或2(相邻两个字符):
      • dp[i][j] = j - i + 1;
    • j-i > 1,则需要查看中间子串的最长回文子序列的长度,用中间串的最长回文子序列的长度加上当前两个字符(i和j指向的字符)
      • dp[i][j] = dp[i+1][j-i] + 2;

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)

cpp 复制代码
// c++
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size()+1, vector<int>(s.size()+1, 0));
        int result = 0;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i]!=s[j]) dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
                else{
                    if(j-i<=1) dp[i][j] = j-i+1;
                    else dp[i][j] = dp[i+1][j-1]+2;
                }
                if(dp[i][j]>result) result = dp[i][j];
            }
            /*
            // 输出dp
            for(int j=0; j<s.size(); j++) cout<<dp[i][j]<<" ";
            cout<<endl;
            */
        }
        return result;

    }
};

动态规划系列完结

相关推荐
微露清风1 天前
系统性学习C++-第九讲-list类
c++·学习·list
大佬,救命!!!1 天前
C++多线程同步与互斥
开发语言·c++·学习笔记·多线程·互斥锁·同步与互斥·死锁和避免策略
Kuo-Teng1 天前
Leetcode438. 找到字符串中所有字母异位词
java·算法·leetcode
散峰而望1 天前
C++入门(一)(算法竞赛)
c语言·开发语言·c++·编辑器·github
C_Liu_1 天前
13.C++:继承
开发语言·c++
gihigo19981 天前
MATLAB使用遗传算法解决车间资源分配动态调度问题
算法·matlab
墨染点香1 天前
LeetCode 刷题【138. 随机链表的复制】
算法·leetcode·链表
却道天凉_好个秋1 天前
目标检测算法与原理(一):迁移学习
算法·目标检测·迁移学习
凡同学。1 天前
通信人C++自学
c++·应届生秋招·后端四件套