*算法训练(leetcode)第四十天 | 647. 回文子串、516. 最长回文子序列

刷题记录

  • [*647. 回文子串](#*647. 回文子串)
  • [*516. 最长回文子序列](#*516. 最长回文子序列)

*647. 回文子串

leetcode题目地址

dp[i][j]存储 i-j 的子串是否是回文串。使用额外的计数器对回文串个数进行记录。

单个字符本身就是回文子串。当子串长度大于1时,两侧的字符相同,则需要判断中间的子串是否是回文串。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size()+1, vector<bool>(s.size()+1, false));
        int result = 0;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i] == s[j]){
                    
                    if(j-i<=1){
                        dp[i][j] = true;
                        result++;
                    }

                    else if(dp[i+1][j-1]) {
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

*516. 最长回文子序列

leetcode题目地址

求的是最长回文子序列而不是子串,因此不需要连续。

dp[i][j]存储的是字符串 s 中 i-j 之间的最长回文子序列长度。

  • 当s[i] != s[j]时,dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
  • 当s[i] == s[j]时,有两种情况:
    • j-i <= 1,即j和i指向同一个字符或相邻的两个字符,则最长子序列长度为1(同一字符)或2(相邻两个字符):
      • dp[i][j] = j - i + 1;
    • j-i > 1,则需要查看中间子串的最长回文子序列的长度,用中间串的最长回文子序列的长度加上当前两个字符(i和j指向的字符)
      • dp[i][j] = dp[i+1][j-i] + 2;

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)

cpp 复制代码
// c++
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size()+1, vector<int>(s.size()+1, 0));
        int result = 0;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i]!=s[j]) dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
                else{
                    if(j-i<=1) dp[i][j] = j-i+1;
                    else dp[i][j] = dp[i+1][j-1]+2;
                }
                if(dp[i][j]>result) result = dp[i][j];
            }
            /*
            // 输出dp
            for(int j=0; j<s.size(); j++) cout<<dp[i][j]<<" ";
            cout<<endl;
            */
        }
        return result;

    }
};

动态规划系列完结

相关推荐
呼啦啦啦啦啦啦啦啦4 小时前
常见的排序算法
java·算法·排序算法
胡萝卜3.05 小时前
数据结构初阶:排序算法(一)插入排序、选择排序
数据结构·笔记·学习·算法·排序算法·学习方法
地平线开发者6 小时前
LLM 中 token 简介与 bert 实操解读
算法·自动驾驶
scx201310046 小时前
20250814 最小生成树和重构树总结
c++·算法·最小生成树·重构树
阿巴~阿巴~6 小时前
冒泡排序算法
c语言·开发语言·算法·排序算法
散1127 小时前
01数据结构-交换排序
数据结构·算法
yzx9910137 小时前
Yolov模型的演变
人工智能·算法·yolo
weixin_307779138 小时前
VS Code配置MinGW64编译SQLite3库
开发语言·数据库·c++·vscode·算法
无聊的小坏坏8 小时前
拓扑排序详解:从力扣 207 题看有向图环检测
算法·leetcode·图论·拓扑学
wwww.bo8 小时前
机器学习(决策树)
算法·决策树·机器学习