*算法训练(leetcode)第四十天 | 647. 回文子串、516. 最长回文子序列

刷题记录

  • [*647. 回文子串](#*647. 回文子串)
  • [*516. 最长回文子序列](#*516. 最长回文子序列)

*647. 回文子串

leetcode题目地址

dp[i][j]存储 i-j 的子串是否是回文串。使用额外的计数器对回文串个数进行记录。

单个字符本身就是回文子串。当子串长度大于1时,两侧的字符相同,则需要判断中间的子串是否是回文串。

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

cpp 复制代码
// c++
class Solution {
public:
    int countSubstrings(string s) {
        vector<vector<bool>> dp(s.size()+1, vector<bool>(s.size()+1, false));
        int result = 0;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i] == s[j]){
                    
                    if(j-i<=1){
                        dp[i][j] = true;
                        result++;
                    }

                    else if(dp[i+1][j-1]) {
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
};

*516. 最长回文子序列

leetcode题目地址

求的是最长回文子序列而不是子串,因此不需要连续。

dp[i][j]存储的是字符串 s 中 i-j 之间的最长回文子序列长度。

  • 当s[i] != s[j]时,dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
  • 当s[i] == s[j]时,有两种情况:
    • j-i <= 1,即j和i指向同一个字符或相邻的两个字符,则最长子序列长度为1(同一字符)或2(相邻两个字符):
      • dp[i][j] = j - i + 1;
    • j-i > 1,则需要查看中间子串的最长回文子序列的长度,用中间串的最长回文子序列的长度加上当前两个字符(i和j指向的字符)
      • dp[i][j] = dp[i+1][j-i] + 2;

时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)

cpp 复制代码
// c++
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int>> dp(s.size()+1, vector<int>(s.size()+1, 0));
        int result = 0;
        for(int i=s.size()-1; i>=0; i--){
            for(int j=i; j<s.size(); j++){
                if(s[i]!=s[j]) dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
                else{
                    if(j-i<=1) dp[i][j] = j-i+1;
                    else dp[i][j] = dp[i+1][j-1]+2;
                }
                if(dp[i][j]>result) result = dp[i][j];
            }
            /*
            // 输出dp
            for(int j=0; j<s.size(); j++) cout<<dp[i][j]<<" ";
            cout<<endl;
            */
        }
        return result;

    }
};

动态规划系列完结

相关推荐
姆路几秒前
QT中使用图表之QChart绘制动态折线图
c++·qt
秋说42 分钟前
【数据结构 | C++】整型关键字的平方探测法散列
数据结构·c++·算法
weixin_478689761 小时前
【回溯法】——组合总数
数据结构·python·算法
戊子仲秋1 小时前
【LeetCode】每日一题 2024_11_14 统计好节点的数目(图/树的 DFS)
算法·leetcode·深度优先
TaoYuan__3 小时前
机器学习的常用算法
人工智能·算法·机器学习
槿花Hibiscus3 小时前
C++基础:Pimpl设计模式的实现
c++·设计模式
用户40547878374824 小时前
深度学习笔记 - 使用YOLOv5中的c3模块进行天气识别
算法
十七算法实验室4 小时前
Matlab实现麻雀优化算法优化随机森林算法模型 (SSA-RF)(附源码)
算法·决策树·随机森林·机器学习·支持向量机·matlab·启发式算法
黑不拉几的小白兔4 小时前
PTA部分题目C++重练
开发语言·c++·算法
迷迭所归处4 小时前
动态规划 —— dp 问题-买卖股票的最佳时机IV
算法·动态规划