【NeRF及其代码NeRF-Pytorch实现】

文章目录

  • 模型输入和输出

  • NeRF-Pytorch代码

  • 参考

  • 在没有仔细学习过NeRF之前,对于NeRF的直观感受是,它是对某个场景三维模型的一个拟合,并且实现了一个渲染的效果,即输入相机位姿信息,输出对应位姿信息的渲染图像。

  • NeRF训练的过程实际上是三维重建/反渲染的过程,即通过渲染的图片来得到三维模型的隐式表达。而NeRF模型训练完成之后的推理过程是渲染过程。

模型输入和输出

  • 直观理解的网络

  • 实际实现的细节

  • 输入(理解层面是相机位姿,实际是采样点的位置和观测角度):5D的相机位姿信息 ( x , y , z , θ , ϕ ) (x, y, z, \theta, \phi) (x,y,z,θ,ϕ),其中包括了相机的三维位置以及角度(包括俯仰角和方位角)。但是在实际代码实现过程中使用两个(x, y, z)来代替5D的位姿信息,并且使用了位置编码(用于增强)的方式来编码6D坐标,最后得到63维+27维的输入。并且作者认为采样点不透明度与观测角度无关,只与采样点位置有关,所以采用了分开输入的方式,只使用相机坐标63维来预测不透明度,并在随后的层中cat进代表相机方向的坐标27维。

  • 输出:NeRF采用体积雾的渲染方式,NeRF模型的直接输出为采样点的颜色RGB以及不透明度信息,通过后处理(体积渲染进行积分,后面会提到)的方式得到最终渲染好的图像。

  • NeRF模型直接输出的含义:一段采样点上的RGBA值,在射线方向上进行积分得到最终一个像素点颜色值(体积雾渲染)。

  • 位置编码(增强高频信息):对于位置xyz坐标(对于两个不同的位置坐标都采用了位置编码,但是所使用的项数不同,相机位置使用10,而相机方向的坐标使用4),文章采用了位置编码的方式,具体而言,对于每个维度,使用cos和sin来编码,并且对于每个cos和sin,都是用了十项,所以输入维度变成 3 + ( 10 + 10 ) ∗ 3 = 63 3+(10+10)*3=63 3+(10+10)∗3=63

  • 训练资料:一个像素+一个相机位姿,而不是一张图+一个相机位姿。一个batch包含很多不同位置像素+位姿。

  • 体积渲染:其中特定的积分方式考虑了遮挡问题(主要考虑第一个波峰的贡献)。采样点个数也是一个超参数。

  • 分层采样

NeRF-Pytorch代码

参考

相关推荐
小码hh6 分钟前
【PonitNet++】1. 从数据到方法:点云技术核心知识全景梳理
人工智能·pytorch·python
sonadorje8 分钟前
矩阵方程求解
人工智能·算法·矩阵
笑脸惹桃花11 分钟前
目标检测数据集——野生动物识别数据集
人工智能·目标检测·宠物
摸鱼仙人~13 分钟前
针对大语言模型文本审核逻辑鲁棒性与精细化规则编排的深度研究报告
人工智能·语言模型·自然语言处理
杜子不疼.15 分钟前
自然语言处理(NLP)实战指南:从传统方法到深度学习
人工智能·深度学习·自然语言处理
GitCode官方17 分钟前
1.8B 体积、33 种语言互译|腾讯混元 HY-MT1.5-1.8B 多语言机器翻译模型上线
人工智能·自然语言处理·机器翻译
式51619 分钟前
RAG检索增强生成基础(一)RAG基础原理
人工智能·机器学习
狮子座明仔21 分钟前
O-Researcher:多智能体蒸馏与强化学习打造开源深度研究新标杆
人工智能·深度学习·语言模型·自然语言处理·开源
沛沛老爹22 分钟前
Web开发者转型AI:Agent Skills团队知识共享机制实战——从GitLab到AI技能库
java·人工智能·gitlab·rag·企业转型·web转ai
白露与泡影22 分钟前
SpringBoot + Vue 实现 Python 在线调试器 - 技术方案文档
vue.js·spring boot·python