【机器学习sklearn实战】计算偏差和方差

采用mlxtend可以很方便的计算Bias-Variance误差分解,下面是回归决策树方法的偏差-方差分解。

python 复制代码
from mlxtend.evaluate import bias_variance_decomp
from sklearn.tree import DecisionTreeRegressor
from mlxtend.data import boston_housing_data
from sklearn.model_selection import train_test_split

X, y = boston_housing_data()
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.3,
                                                    random_state=123,
                                                    shuffle=True)

tree = DecisionTreeRegressor(random_state=123)

avg_expected_loss, avg_bias, avg_var = bias_variance_decomp(
        tree, X_train, y_train, X_test, y_test, 
        loss='mse',
        random_seed=123)

print('Average expected loss: %.3f' % avg_expected_loss)
print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

输出结果为:

sh 复制代码
Average expected loss: 31.536
Average bias: 14.096
Average variance: 17.440

作为对比,下面是Bagging方法的偏差-方差,可以看出采用Bagging方法可以降低variance。

python 复制代码
from sklearn.ensemble import BaggingRegressor

tree = DecisionTreeRegressor(random_state=123)
bag = BaggingRegressor(estimator=tree,
                       n_estimators=100,
                       random_state=123)

avg_expected_loss, avg_bias, avg_var = bias_variance_decomp(
        bag, X_train, y_train, X_test, y_test, 
        loss='mse',
        random_seed=123)

print('Average expected loss: %.3f' % avg_expected_loss)
print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

输出结果为:

sh 复制代码
Average expected loss: 18.620
Average bias: 15.460
Average variance: 3.159
相关推荐
张德锋2 小时前
Pytorch实现mnist手写数字识别
机器学习
roman_日积跬步-终至千里2 小时前
【学习线路】机器学习线路概述与内容关键点说明
人工智能·学习·机器学习
禺垣6 小时前
支持向量机(SVM)分类
机器学习
禺垣6 小时前
协同过滤推荐算法
机器学习
这里有鱼汤6 小时前
90%的人都会搞错的XGBoost预测逻辑,未来到底怎么预测才对?
后端·机器学习
小庞在加油7 小时前
《dlib库中的聚类》算法详解:从原理到实践
c++·算法·机器学习·数据挖掘·聚类
蓝婷儿9 小时前
Python 机器学习核心入门与实战进阶 Day 1 - 分类 vs 回归
python·机器学习·分类
程序员阿超的博客10 小时前
Python 数据分析与机器学习入门 (八):用 Scikit-Learn 跑通第一个机器学习模型
python·机器学习·数据分析·scikit-learn·入门教程·python教程
平和男人杨争争14 小时前
机器学习2——贝叶斯理论下
人工智能·机器学习
归去_来兮14 小时前
支持向量机(SVM)分类
机器学习·支持向量机·分类