【机器学习sklearn实战】计算偏差和方差

采用mlxtend可以很方便的计算Bias-Variance误差分解,下面是回归决策树方法的偏差-方差分解。

python 复制代码
from mlxtend.evaluate import bias_variance_decomp
from sklearn.tree import DecisionTreeRegressor
from mlxtend.data import boston_housing_data
from sklearn.model_selection import train_test_split

X, y = boston_housing_data()
X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.3,
                                                    random_state=123,
                                                    shuffle=True)

tree = DecisionTreeRegressor(random_state=123)

avg_expected_loss, avg_bias, avg_var = bias_variance_decomp(
        tree, X_train, y_train, X_test, y_test, 
        loss='mse',
        random_seed=123)

print('Average expected loss: %.3f' % avg_expected_loss)
print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

输出结果为:

sh 复制代码
Average expected loss: 31.536
Average bias: 14.096
Average variance: 17.440

作为对比,下面是Bagging方法的偏差-方差,可以看出采用Bagging方法可以降低variance。

python 复制代码
from sklearn.ensemble import BaggingRegressor

tree = DecisionTreeRegressor(random_state=123)
bag = BaggingRegressor(estimator=tree,
                       n_estimators=100,
                       random_state=123)

avg_expected_loss, avg_bias, avg_var = bias_variance_decomp(
        bag, X_train, y_train, X_test, y_test, 
        loss='mse',
        random_seed=123)

print('Average expected loss: %.3f' % avg_expected_loss)
print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

输出结果为:

sh 复制代码
Average expected loss: 18.620
Average bias: 15.460
Average variance: 3.159
相关推荐
创业之路&下一个五年22 分钟前
以教为学:在赋能他人中完成自我跃升
机器学习·自然语言处理·数据挖掘
机 _ 长38 分钟前
YOLO26 改进 | 训练策略 | 知识蒸馏 (Response + Feature + Relation)
python·深度学习·yolo·目标检测·机器学习·计算机视觉
szcsun51 小时前
机器学习(二)-线性回归实战
人工智能·机器学习·线性回归
力学与人工智能2 小时前
“高雷诺数湍流数据库的构建及湍流机器学习集成研究”湍流重大研究计划集成项目顺利结题
数据库·人工智能·机器学习·高雷诺数·湍流·重大研究计划·项目结题
康谋自动驾驶3 小时前
高校自动驾驶研究新基建:“实测 - 仿真” 一体化数据采集与验证平台
人工智能·机器学习·自动驾驶·科研·数据采集·时间同步·仿真平台
砚边数影3 小时前
决策树实战:基于 KingbaseES 的鸢尾花分类 —— 模型可视化输出
java·数据库·决策树·机器学习·分类·金仓数据库
_ziva_4 小时前
Layer Normalization 全解析:LLMs 训练稳定的核心密码
人工智能·机器学习·自然语言处理
轻览月4 小时前
【DL】卷积神经网络
深度学习·机器学习·cnn·卷积神经网络
逄逄不是胖胖4 小时前
《动手学深度学习》-55-1RNN的复杂实现
pytorch·深度学习·机器学习
砚边数影4 小时前
决策树原理(一):信息增益与特征选择 —— Java 实现 ID3 算法
java·数据库·决策树·机器学习·kingbase·数据库平替用金仓·金仓数据库