Neural Architecture Search:使用Ultralytics框架进行YOLO-NAS目标检测

Neural Architecture Search:使用Ultralytics框架进行YOLO-NAS目标检测


前言

相关介绍

  • Ultralytics 官方文档https://docs.ultralytics.com/
  • Ultralytics 源代码地址https://github.com/ultralytics/ultralytics.git.
  • 概述
    YOLO-NAS 由 Deci AI 开发,是一个突破性的目标检测基础模型。它是先进的神经架构搜索技术的产物,经过精心设计,旨在解决以前 YOLO 模型的局限性。 YOLO-NAS 在量化支持和准确性与延迟权衡方面取得了显着改进,代表了目标检测领域的重大飞跃。
  • YOLO-NAS 采用量化感知块和选择性量化来实现最佳性能。该模型在转换为 INT8 量化版本时,精度下降最小,比其他模型有显着改进。这些进步最终形成了具有前所未有的物体检测功能和出色性能的卓越架构。
  • 主要特点
    • 量化友好的基本块:YOLO-NAS 引入了一种新的对量化友好的基本块,解决了先前 YOLO 模型的重大局限性之一。
    • 复杂的训练和量化:YOLO-NAS 利用先进的训练方案和训练后量化来提高性能。
    • AutoNAC 优化和预训练:YOLO-NAS 利用 AutoNAC 优化,并在 COCO、Objects365 和 Roboflow 100 等著名数据集上进行预训练。这种预训练使其非常适合生产环境中的下游对象检测任务。
  • 预训练模型
    使用 Ultralytics 提供的预训练 YOLO-NAS 模型体验下一代目标检测的强大功能。这些模型旨在在速度和准确性方面提供一流的性能。从适合您特定需求的多种选项中进行选择:
  • 每个模型变体都旨在提供平均精度 (mAP) 和延迟之间的平衡,帮助您优化对象检测任务的性能和速度。
  • Ultralytics 使 YOLO-NAS 模型可以通过我们的 ultralytics python 包轻松集成到您的 Python 应用程序中。该包提供了一个用户友好的 Python API 来简化该过程。

前提条件

实验环境

bash 复制代码
matplotlib>=3.2.2
numpy>=1.18.5
opencv-python>=4.6.0
Pillow>=7.1.2
PyYAML>=5.3.1
requests>=2.23.0
scipy>=1.4.1
torch>=1.7.0
torchvision>=0.8.1
tqdm>=4.64.0
tensorboard>=2.4.1
pandas>=1.1.4
seaborn>=0.11.0

安装环境

bash 复制代码
pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快

项目地址

Linux

bash 复制代码
git clone https://github.com/ultralytics/ultralytics.git
bash 复制代码
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.

Windows

请到https://github.com/ultralytics/ultralytics.git网站下载源代码zip压缩包。

使用Ultralytics框架进行YOLO-NAS目标检测

进行预测

bash 复制代码
python predict.py
python 复制代码
from ultralytics import NAS


if __name__=="__main__":
    # Load a COCO-pretrained YOLO-NAS-s model
    model = NAS("yolo_nas_s.pt")

    # Display model information (optional)
    model.info()

    # Run inference with the YOLO-NAS-s model on the image
    results = model("imgs/test.png", save=True)

    results[0].show()

进行验证

bash 复制代码
python val.py
python 复制代码
from ultralytics import YOLO

def val():

    # Create a YOLO-World model
    model = YOLO("yolov8s-world.pt")  # or select yolov8m/l-world.pt for different sizes

    # Conduct model validation on the COCO8 example dataset
    metrics = model.val(data="coco8.yaml", batch=1, imgsz=640, device=0,workers=1)

if __name__=="__main__":
    val()

参考文献

1\] [Ultralytics 源代码地址](https://github.com/ultralytics/ultralytics.git):https://github.com/ultralytics/ultralytics.git. \[2\] [Ultralytics Docs](https://docs.ultralytics.com/):https://docs.ultralytics.com/ \[3\] [SAM2 官方源代码](https://github.com/facebookresearch/segment-anything-2.git):https://github.com/facebookresearch/segment-anything-2.git \[4\] [SAM2 论文地址](https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/):https://ai.meta.com/research/publications/sam-2-segment-anything-in-images-and-videos/ \[5\] https://docs.ultralytics.com/models/sam/ \[6\] https://docs.ultralytics.com/models/sam-2/ \[7\] https://segment-anything.com/ \[8\] https://arxiv.org/abs/2304.02643 \[9\] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, Ross Girshick. Segment Anything. 2023 \[10\] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chay Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun,Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick,Piotr Dollar, Christoph Feichtenhofer. SAM 2: Segment Anything in Images and Videos. 2024 > * 由于本人水平有限,难免出现错漏,敬请批评改正。 > * 更多精彩内容,可点击进入[Python日常小操作](https://blog.csdn.net/friendshiptang/category_11653584.html)专栏、[OpenCV-Python小应用](https://blog.csdn.net/friendshiptang/category_11975851.html)专栏、[YOLO系列](https://blog.csdn.net/friendshiptang/category_12168736.html)专栏、[自然语言处理](https://blog.csdn.net/friendshiptang/category_12396029.html)专栏或我的[个人主页](https://blog.csdn.net/FriendshipTang)查看 > * [基于DETR的人脸伪装检测](https://blog.csdn.net/FriendshipTang/article/details/131670277) > * [YOLOv7训练自己的数据集(口罩检测)](https://blog.csdn.net/FriendshipTang/article/details/126513426) > * [YOLOv8训练自己的数据集(足球检测)](https://blog.csdn.net/FriendshipTang/article/details/129035180) > * [YOLOv10训练自己的数据集(交通标志检测)](https://blog.csdn.net/FriendshipTang/article/details/140362093) > * [YOLOv5:TensorRT加速YOLOv5模型推理](https://blog.csdn.net/FriendshipTang/article/details/131023963) > * [YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU](https://blog.csdn.net/FriendshipTang/article/details/129969044) > * [玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测](https://blog.csdn.net/FriendshipTang/article/details/126696542) > * [YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制](https://blog.csdn.net/FriendshipTang/article/details/130396540) > * [YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层](https://blog.csdn.net/FriendshipTang/article/details/130375883) > * [Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集](https://blog.csdn.net/FriendshipTang/article/details/131979248) > * [YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)](https://blog.csdn.net/FriendshipTang/article/details/131987249) > * [使用Kaggle GPU资源免费体验Stable Diffusion开源项目](https://blog.csdn.net/FriendshipTang/article/details/132238734)

相关推荐
Java樱木21 分钟前
哈尔滨工业大学:大模型时代的具身智能
人工智能
weixin_5990739443 分钟前
第P10周:Pytorch实现车牌识别
人工智能·pytorch·深度学习
袖手蹲1 小时前
宏碁笔记本电脑擎7PRO搭载的 NVIDIA RTX 5080 显卡安装pytorch
人工智能·pytorch·电脑
coding随想1 小时前
Ollama本地服务无法通过IP访问的终极解决方案
网络·人工智能·网络协议·tcp/ip
TGITCIC1 小时前
7B斗671B:扩散模型能否颠覆自回归霸权?
人工智能·自回归·扩散·deepseek·大模型自回归·大模型扩散
L_cl1 小时前
【NLP 面经 7、常见transformer面试题】
人工智能·自然语言处理·transformer
沙子可可2 小时前
深入学习Pytorch:第一章-初步认知
人工智能·pytorch·深度学习·学习
风吹落叶花飘荡3 小时前
2025年 能够有效提升AI的生成质量和逻辑严谨性 的通用型系统提示
人工智能
云卷风舒3 小时前
Fedora 40 开机启动失败,不重装系统,如何恢复成功 ?(附带恢复过程)
人工智能·claude·fedora
努力犯错玩AI3 小时前
Llama 4 来了!AI 快站助你一键极速下载,抢先体验 MoE + 多模态 + 超长上下文
人工智能·后端·python