YOLOv10实时端到端目标检测

文章目录


前言

距离上次写YOLOv5已经过去了两年,正好最近用YOLOv10重构了项目,总结下YOLOv10。

YOLOv10真正实时端到端目标检测,那么什么是端到端?

端到端目标检测是一种从原始数据输入到最终结果输出的直接过程,无需分步骤处理或人工干预。在YOLOv10中移除非最大抑制(NMS),从而减少了推理延迟。


一、非极值大抑制(NMS)

非最大值抑制(NMS)是一种在目标检测中广泛应用的算法,主要用于去除冗余的检测框,只保留最有可能包含目标物体的框。

在目标检测任务中,通常会有多个候选框同时检测到同一个目标,这些框之间会有不同程度的重叠。为了从这些重叠的框中筛选出最佳检测结果,NMS算法被提出和应用。

二、NMS算法的具体原理和步骤

1.置信度排序:根据每个边界框的置信度进行降序排列,置信度最高的边界框被认为是最有可能正确检测到目标的。

2.选择边界框:从排序后的列表中选择置信度最高的边界框,标记为已选,并将其添加到最终的检测结果列表中。

3.计算交并比:对于剩余的每个边界框,计算它与已选边界框的交并比(IOU),即交集与并集的比值。

4.剔除低置信度框:如果某个边界框与已选框的IOU超过了预设的阈值(例如0.5或0.7),则认为这两个框表示的是同一个目标,于是根据置信度较低的原则,剔除这个低置信度的边界框。

5.重复选择过程:继续选择剩余边界框中置信度最高的,重复计算IOU和剔除过程,直到所有边界框都被检查过。

6.结束,选出最优框

三、YOLOV10创新点

YOLOv10通过引入双重标签分配策略和一致匹配度量,成功去除了非最大抑制(NMS)机制。

双重标签分配策略:其中包括一对多和一对一两种分配模式。这种策略不仅提供了丰富的监督信号,确保了训练过程中的准确性,而且避免了在推理阶段使用NMS,从而提高了整体的效率。这一创新的方法有效地平衡了训练与推理之间的需求。

一致匹配度量:该策略确保了在训练过程中,不同的预测头产生的预测结果能够保持一致性。这种一致性的优化进一步保证了在去除NMS的情况下,模型仍然能够维持高性能和高准确性。

四、YOLOv10使用教程

YOLOv10进行了高度封装,使用步骤也很简单,我常规的使用方法是通过OpenCV读取rtsp流进行检测

python 复制代码
import cv2
from ultralytics import YOLOv10
detect = YOLOv10("yolov10s.pt")

if __name__ == '__main__':
    cap = cv2.VideoCapture(rtsp)
    while cap.isOpened():
        success, frame = cap.read()
        if success:
            # conf指定阈值 classes指定检测类目
            results = detect.predict(frame, conf=0.5, classes=[0])
            # 返回json格式的数据,需要不同的格式具体可以查看源码
            print(results[0].tosjon())
        else:
            cap = cv2.VideoCapture(rtsp)

YOLOv10 提供了多种模型:

模型 说明
YOLOv10-N 用于资源极其有限环境的纳米版本
YOLOv10-S 兼顾速度和精度的小型版本
YOLOv10-M 通用中型版本
YOLOv10-B 平衡型,宽度增加,精度更高
YOLOv10-L 大型版本,精度更高,但计算资源增加
YOLOv10-X 超大型版本可实现最高精度和性能

五、官方github地址

php 复制代码
https://github.com/THU-MIG/yolov10
相关推荐
adaAS141431513 小时前
【深度学习】【目标检测】使用RetinaNet-R101-FPN模型实现建筑设备物体检测_1
人工智能·深度学习·目标检测
Faker66363aaa14 小时前
基于yolo13-C3k2-DBB的铝罐识别与分类系统
人工智能·目标跟踪
Coovally AI模型快速验证14 小时前
是什么支撑L3自动驾驶落地?读懂AI驾驶与碰撞预测
人工智能·深度学习·目标检测·机器学习·计算机视觉·自动驾驶
Dekesas969515 小时前
【YOLOv8】风速塔设备序列号自动识别与定位 - 基于CSP-FreqSpatial改进方案
yolo
FL162386312915 小时前
[C#][winform]基于yolov11的打电话玩手机检测系统C#源码+onnx模型+评估指标曲线+精美GUI界面
yolo·智能手机
jinglong.zha16 小时前
【Yolov8】图形化检测视频-源码免费分享
人工智能·yolo·目标跟踪·视觉检测·yolov8·yolov11
智驱力人工智能16 小时前
无人机车辆密度检测系统价格 询价准备 需要明确哪些参数 物流园区无人机车辆调度系统 无人机多模态车流密度检测技术
深度学习·算法·安全·yolo·无人机·边缘计算
adaAS141431516 小时前
YOLOv5-ASF-P2:果蝇性别识别与分类实战指南_1
yolo·分类·数据挖掘
前网易架构师-高司机19 小时前
标注好的胃病识别数据集,可识别食管炎,胃炎,胃出血,健康,息肉,胃溃疡等常见疾病,支持yolo, coco json,pascal voc xml格式的标注
深度学习·yolo·数据集·疾病·胃病·胃炎·胃部
超龄超能程序猿1 天前
YOLOv8 五大核心模型:从检测到分类的介绍
yolo·分类·数据挖掘