循环神经网络五-使用LSTM完成文本情感分类

在前面使用word embedding去实现了文本情感分类。那么现在在这个模型中添加上LSTM层,为了达到更好的效果,做一下修改

1.MAX_LEN=200

2.构建dataset的过程,将数据转化为2分类,前面是十分类。pos类为1,neg为0,因为25000个要本做十分类数据量太小了

3.在实例化LSTM的时候,使用dropout=0.5,在模型评估过程中,dropout自动会为0

一.修改模型

python 复制代码
"""构建模型model.py文件"""
import torch.nn as nn
import torch
import config
import torch.nn.functional as F

class IMDBLstmmodel(nn.Module):
    def __init__(self):
        super(IMDBLstmmodel,self).__init__()
        self.hidden_size = 64   # 设置隐藏个数
        self.embedding_dim = 200  # 设置一个词语用多大的向量表示
        self.num_layer = 2   # 设置隐藏层数量
        self.bidriectional = True  # 是否使用双向LSTM
        self.bi_num = 2 if self.bidriectional else 1
        self.dropout = 0.5 
        #以上部分为超参数,可以自行修改

        self.embedding = nn.Embedding(len(config.ws),self.embedding_dim,padding_idx=config.ws.PAD) #实例化embedding[N,300]
        self.lstm = nn.LSTM(self.embedding_dim,self.hidden_size,self.num_layer,bidirectional=True,dropout=self.dropout)  # 实例化lstm
        #使用两个全连接层,中间使用relu激活函数
        self.fc = nn.Linear(self.hidden_size*self.bi_num,20)  
        self.fc2 = nn.Linear(20,2)


    def forward(self, x):
        x = self.embedding(x)
        x = x.permute(1,0,2) #进行轴交换
        h_0,c_0 = self.init_hidden_state(x.size(1))
        _,(h_n,c_n) = self.lstm(x,(h_0,c_0))

        #只要最后一个lstm单元处理的结果,这里多去的hidden state
        out = torch.cat([h_n[-2, :, :], h_n[-1, :, :]], dim=-1)
        out = self.fc(out)
        out = F.relu(out)
        out = self.fc2(out)
        return F.log_softmax(out,dim=-1)

    def init_hidden_state(self,batch_size):
        h_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        c_0 = torch.rand(self.num_layer * self.bi_num, batch_size, self.hidden_size).to(device)
        return h_0,c_0

二.完成训练和测试代码

python 复制代码
train_batch_size = 64
test_batch_size = 5000
# imdb_model = IMDBModel(MAX_LEN) #基础model
imdb_model = IMDBLstmmodel().to(device) #在gpu上运行,提高运行速度
# imdb_model.load_state_dict(torch.load("model/mnist_net.pkl"))
optimizer = optim.Adam(imdb_model.parameters())
criterion = nn.CrossEntropyLoss()

def train(epoch):
    mode = True
    imdb_model.train(mode)
    train_dataloader =get_dataloader(mode,train_batch_size)
    for idx,(target,input,input_lenght) in enumerate(train_dataloader):
        target = target.to(device)
        input = input.to(device)
        optimizer.zero_grad()
        output = imdb_model(input)
        loss = F.nll_loss(output,target) #traget需要是[0,9],不能是[1-10]
        loss.backward()
        optimizer.step()
        if idx %10 == 0:
            pred = torch.max(output, dim=-1, keepdim=False)[-1]
            acc = pred.eq(target.data).cpu().numpy().mean()*100.

            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\t ACC: {:.6f}'.format(epoch, idx * len(input), len(train_dataloader.dataset),
                       100. * idx / len(train_dataloader), loss.item(),acc))

            torch.save(imdb_model.state_dict(), "model/mnist_net.pkl")
            torch.save(optimizer.state_dict(), 'model/mnist_optimizer.pkl')
            
 def test():
    mode = False
    imdb_model.eval()
    test_dataloader = get_dataloader(mode, test_batch_size)
    with torch.no_grad():
        for idx,(target, input, input_lenght) in enumerate(test_dataloader):
            target = target.to(device)
            input = input.to(device)
            output = imdb_model(input)
            test_loss  = F.nll_loss(output, target,reduction="mean")
            pred = torch.max(output,dim=-1,keepdim=False)[-1]
            correct = pred.eq(target.data).sum()
            acc = 100. * pred.eq(target.data).cpu().numpy().mean()
            print('idx: {} Test set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(idx,test_loss, correct, target.size(0),acc))
            
 if __name__ == "__main__":
    test()
    for i in range(10):
        train(i)
        test()
相关推荐
机器学习之心2 小时前
BiTCN-BiGRU基于双向时间卷积网络结合双向门控循环单元的数据多特征分类预测(多输入单输出)
深度学习·分类·gru
机器学习之心4 小时前
Bayes-GRU-Attention的数据多特征分类预测Matlab实现
matlab·分类·gru
程序员非鱼6 小时前
深度学习任务简介:分类、回归和生成
人工智能·深度学习·分类·回归·生成
机器学习之心7 小时前
LSTM-SVM时序预测 | Matlab基于LSTM-SVM基于长短期记忆神经网络-支持向量机时间序列预测
神经网络·支持向量机·lstm
落魄君子7 小时前
SVM分类-支持向量机(Support Vector Machine)
神经网络·算法·支持向量机·分类
学习BigData15 小时前
【使用PyQt5和YOLOv11开发电脑屏幕区域的实时分类GUI】——选择检测区域
qt·yolo·分类
【建模先锋】19 小时前
故障诊断 | 一个小创新:特征提取+KAN分类
人工智能·分类·数据挖掘
Bony-1 天前
基于卷积神经网络(CNN)和ResNet50的水果与蔬菜图像分类系统
人工智能·分类·cnn
Python机器学习AI1 天前
融合机器学习算法:用VotingClassifier实现分类多模型的投票集成
人工智能·机器学习·分类
WeeJot嵌入式1 天前
长短期记忆网络(LSTM):深度学习中的序列数据处理利器
人工智能·深度学习·lstm