1DCNN-2DResNet并行故障诊断模型

往期精彩内容:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理

Python轴承故障诊断入门教学-CSDN博客

Python轴承故障诊断 (13)基于故障信号特征提取的超强机器学习识别模型-CSDN博客

Python轴承故障诊断 (14)高创新故障识别模型-CSDN博客

Python轴承故障诊断 (15)基于CNN-Transformer的一维故障信号识别模型-CSDN博客

轴承故障全家桶更新 | 基于时频图像的分类算法-CSDN博客

Python轴承故障诊断 (16)高创新故障识别模型(二)-CSDN博客

Python轴承故障诊断 (17)基于TCN-CNN并行的一维故障信号识别模型_pytorch使用tcn网络进行故障诊断 csdn-CSDN博客

独家原创 | SCI 1区 高创新轴承故障诊断模型!-CSDN博客

Python轴承故障诊断 (18)基于CNN-TCN-Attention的创新诊断模型-CSDN博客

Python轴承故障诊断 (20)高创新故障识别模型(三)-CSDN博客

注意力魔改 | 超强轴承故障诊断模型!-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

基于k-NN + GCN的轴承故障诊断模型-CSDN博客

独家首发 | 基于 KAN、KAN卷积的轴承故障诊断模型-CSDN博客

故障诊断 | 创新模型更新:基于SSA-CNN-Transformer诊断模型-CSDN博客

Python轴承故障诊断 (21)基于VMD-CNN-BiTCN的创新诊断模型-CSDN博客

● 数据集:经测试,模型在CWRU西储大学轴承数据集 和 哈工大航天发动机轴承数据集上表现分类准确率 均为99%!

● 环境框架:python 3.9 pytorch 1.8 及其以上版本均可运行

● 准确率:测试集99%

● 使用对象:论文需求、毕业设计需求者

● 代码保证:代码注释详细、即拿即可跑通。

创新点:

分支一:轴承故障时序信号作为CNN模块输入,通过一系列的1D卷积层和池化层操作,实现对信号数据的时域和局部特征提取;

分之二:轴承故障信号先通过堆叠为2维矩阵,然后是利用通过2D的ResNet卷积层和残差块对数据进行全局特征提取;

并行融合:将1D CNN模块和2D ResNet模块的输出进行并行融合,以获得融合了时域和频域信息的特征表示。这些特征表示经过全连接层进行分类,最终得到故障诊断的结果。 通过1D CNN和2D ResNet的并行处理,该模型能够综合利用时域和频域信息,从而提高故障诊断的准确性和鲁棒性,充分挖掘数据之间的关联性,提高了故障诊断的性能。

前言

本文基于凯斯西储大学(CWRU)轴承数据,先经过数据预处理进行数据集的制作和加载,最后通过Pytorch实现1DCNN-2DResNet并行模型对故障数据的分类。凯斯西储大学轴承数据的详细介绍可以参考下文:

Python-凯斯西储大学(CWRU)轴承数据解读与分类处理_cwru数据集-CSDN博客

1 轴承故障数据的预处理

1.1 导入数据

参考之前的文章,进行故障10分类的预处理,凯斯西储大学轴承数据10分类数据集:

train_set、val_set、test_set 均为按照7:2:1划分训练集、验证集、测试集,最后保存数据

上图是数据的读取形式以及预处理思路

1.2 数据预处理,制作数据集

2 基于Pytorch的1DCNN-2DResNet的轴承故障诊断

2.1 定义1DCNN-2DResNet分类网络模型

2.2 设置参数,训练模型

50个epoch,准确率100%,用1DCNN-2DResNet并行网络分类效果显著,模型能够充分提取轴承故障信号的全局空间和局部特征,收敛速度快,性能优越,精度高,效果明显!

2.3 模型评估

准确率、精确率、召回率、F1 Score

故障十分类混淆矩阵:

代码、数据如下:

对数据集和代码感兴趣的,可以关注最后一行

python 复制代码
# 加载数据
import torch
from joblib import dump, load
import torch.utils.data as Data
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
# 参数与配置
torch.manual_seed(100)  # 设置随机种子,以使实验结果具有可重复性
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
#代码和数据集:https://mbd.pub/o/bread/ZpWakplp
相关推荐
我的xiaodoujiao16 分钟前
使用 Python 语言 从 0 到 1 搭建完整 Web UI自动化测试学习系列 38--Allure 测试报告
python·学习·测试工具·pytest
小鸡吃米…6 小时前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫6 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)6 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan7 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维7 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS7 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd7 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
njsgcs7 小时前
ue python二次开发启动教程+ 导入fbx到指定文件夹
开发语言·python·unreal engine·ue
io_T_T7 小时前
迭代器 iteration、iter 与 多线程 concurrent 交叉实践(详细)
python