【机器学习西瓜书学习笔记——聚类】

机器学习西瓜书学习笔记【第九章】

第九章 聚类

9.1 聚类任务

簇:给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。

9.2 性能度量

两类指标

外部指标:将聚类结果与某个"参考模 型" 进行比较

  • Jaccard 系数

  • FM指数

  • Rand指数

内部指标:直接考察聚类结果而不利用任何参考模型

  • DB指数

  • Dunn指数(DI)

9.3距离计算

基本性质

非负性

统一性

对称性

直递性

属性
有序属性
  • 欧氏距离:
  • 曼哈顿距离:
  • 切比雪夫距离:
无序属性
混合距离
加权距离

9.4 原型聚类

K-MEANS聚类算法
步骤

①我们选择一些类/组来使用并随机地初始化它们各自的中心点。

②每个数据点通过计算点和每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。

③基于这些分类点,我们通过取组中所有向量的均值来重新计算组中心。

④对一组迭代重复这些步骤。

优势

速度非常快

劣势

①必须选择有多少组/类。

②从随机选择的聚类中心开始,因此在不同的算法运行中可能产生不同的聚类结果。因此,结果可能是不可重复的,并且缺乏一致性。

学习向量量化

和 K-means 的不同:

  • 每个样例有类别标签,即 LVQ 是一种监督式学习;
  • 输出不是每个簇的划分,而是每个类别的原型向量;
  • 每个类别的原型向量不是简单的均值向量,考虑了附近非 / 同样例的影响。
高斯混合聚类
步骤
  1. 初始化 高斯混合成分的个数 k ,假设高斯混合分布模型参数 α(高斯混合系数) μ (均值) , Σ(协方差矩阵)
  2. 分别计算每个样本点的 后验概率 (该样本点属于每一个高斯模型的概率);
  3. 迭代 α μ , Σ;
  4. 重复第二步直到收敛。
难点
  • 后验概率 (该样本点属于每一个高斯模型的概率)的计算:
      • 上述公式由 7.18 相减化简而来
  • 怎样迭代 α μ , Σ;
    • α ------通过样本加权平均值来估计
    • Σ ------通过样本加权平均值来估计
    • μ ------由样本属于该成分的平均后验概率确定
例子
EM思想的体现
小结

9.5 密度聚类

密度聚类:根据样本分布的紧密程度确定。密度聚类算法从样本密度的角度考察样本之间的连接性,并基于可连接样本不断扩展聚类簇。

9.6 层次聚类

在不同层次对数据集进行划分,形成树形的聚类结构。

聚集策略:自底向上

分拆策略:自顶向下


相关推荐
CCPC不拿奖不改名3 分钟前
大语言模型基础:大语言模型核心原理(大语言模型和传统的机器学习的差异)
人工智能·机器学习·语言模型
ldccorpora14 分钟前
GALE Phase 1 Distillation Training数据集介绍,官网编号LDC2007T20
人工智能·深度学习·算法·机器学习·自然语言处理·语音识别
木头程序员17 分钟前
生成式AI可靠性与可控性技术研究:从真实性到可控编辑
图像处理·人工智能·深度学习·机器学习·计算机视觉·语言模型
henujolly19 分钟前
命令行里输入 `vite`,发生了什么
学习
好奇龙猫22 分钟前
【AI学习-comfyUI学习-三十三节-FLXUcontrolnet canny(UNion)+canny(xlabs)工作流-各个部分学习】
人工智能·学习
万里不留行23 分钟前
【LangChain V1.0学习】第二课:批处理与持久化对话(通过完成情感机器人多轮对话进行学习)
人工智能·python·学习·语言模型·langchain
啵啵鱼爱吃小猫咪25 分钟前
机器人示教学习入门介绍
人工智能·学习·机器人
菜鸟江多多27 分钟前
【国内首款STM32 Zephyr RTOS学习套件】
stm32·嵌入式硬件·学习
芸简新章30 分钟前
Node.js学习阶段总结-阶段2
学习·node.js
笑鸿的学习笔记36 分钟前
git笔记之默认使用vim以及修改倒数第二次的commit提交信息到远程
笔记·git·vim