【机器学习西瓜书学习笔记——聚类】

机器学习西瓜书学习笔记【第九章】

第九章 聚类

9.1 聚类任务

簇:给定一组数据点,我们可以使用聚类算法将每个数据点划分为一个特定的组。

9.2 性能度量

两类指标

外部指标:将聚类结果与某个"参考模 型" 进行比较

  • Jaccard 系数

  • FM指数

  • Rand指数

内部指标:直接考察聚类结果而不利用任何参考模型

  • DB指数

  • Dunn指数(DI)

9.3距离计算

基本性质

非负性

统一性

对称性

直递性

属性
有序属性
  • 欧氏距离:
  • 曼哈顿距离:
  • 切比雪夫距离:
无序属性
混合距离
加权距离

9.4 原型聚类

K-MEANS聚类算法
步骤

①我们选择一些类/组来使用并随机地初始化它们各自的中心点。

②每个数据点通过计算点和每个组中心之间的距离进行分类,然后将这个点分类为最接近它的组。

③基于这些分类点,我们通过取组中所有向量的均值来重新计算组中心。

④对一组迭代重复这些步骤。

优势

速度非常快

劣势

①必须选择有多少组/类。

②从随机选择的聚类中心开始,因此在不同的算法运行中可能产生不同的聚类结果。因此,结果可能是不可重复的,并且缺乏一致性。

学习向量量化

和 K-means 的不同:

  • 每个样例有类别标签,即 LVQ 是一种监督式学习;
  • 输出不是每个簇的划分,而是每个类别的原型向量;
  • 每个类别的原型向量不是简单的均值向量,考虑了附近非 / 同样例的影响。
高斯混合聚类
步骤
  1. 初始化 高斯混合成分的个数 k ,假设高斯混合分布模型参数 α(高斯混合系数) μ (均值) , Σ(协方差矩阵)
  2. 分别计算每个样本点的 后验概率 (该样本点属于每一个高斯模型的概率);
  3. 迭代 α μ , Σ;
  4. 重复第二步直到收敛。
难点
  • 后验概率 (该样本点属于每一个高斯模型的概率)的计算:
      • 上述公式由 7.18 相减化简而来
  • 怎样迭代 α μ , Σ;
    • α ------通过样本加权平均值来估计
    • Σ ------通过样本加权平均值来估计
    • μ ------由样本属于该成分的平均后验概率确定
例子
EM思想的体现
小结

9.5 密度聚类

密度聚类:根据样本分布的紧密程度确定。密度聚类算法从样本密度的角度考察样本之间的连接性,并基于可连接样本不断扩展聚类簇。

9.6 层次聚类

在不同层次对数据集进行划分,形成树形的聚类结构。

聚集策略:自底向上

分拆策略:自顶向下


相关推荐
huangkj-henan25 分钟前
DA217应用笔记
笔记
Young_2022020227 分钟前
学习笔记——KMP
笔记·学习
行然梦实43 分钟前
学习日记_20241110_聚类方法(K-Means)
学习·kmeans·聚类
马船长1 小时前
制作图片木马
学习
秀儿还能再秀1 小时前
机器学习——简单线性回归、逻辑回归
笔记·python·学习·机器学习
WCF向光而行1 小时前
Getting accurate time estimates from your tea(从您的团队获得准确的时间估计)
笔记·学习
学术搬运工1 小时前
【珠海科技学院主办,暨南大学协办 | IEEE出版 | EI检索稳定 】2024年健康大数据与智能医疗国际会议(ICHIH 2024)
大数据·图像处理·人工智能·科技·机器学习·自然语言处理
wang09072 小时前
工作和学习遇到的技术问题
学习
Li_0304063 小时前
Java第十四天(实训学习整理资料(十三)Java网络编程)
java·网络·笔记·学习·计算机网络