[论文泛读]zkLLM: Zero Knowledge Proofs for Large Language models

文章目录

介绍

这篇文章发在CCS2024,CCS是密码学领域的顶会。作者是来自加拿大的University of Waterloo。文章对大语言模型像GPT和LLM等大语言模型实现了零知识可验证执行,但不涉及零知识可验证训练。个人觉得这是一篇值得精读的一篇文章。文章的方案与现存的RISC-ZERO和EZKL或者Halo2的方案(zkML)不同。文中使用完全并行化的 CUDA ,同时对于拥有 130 亿个参数的 LLM,这篇文章的方法能够在 15 分钟内为整个推理过程生成正确性证明。生成的证明大小不到 200 kB。(使用ezkl的方案使用nanoGPT参数大概40w实现零知识可验证执行所需要的时间2小时,而这篇论文的方案有着质的提升)。

实验数据

实验数据1

论文中分别对大语言模型进行证明生成的时间,证明大小以及验证时间进行了测量。

实验数据2

论文中与zkML的生成证明的时间进行了比较,zk LLM方案的生成证明的时间远远低于zkML生成证明的时间。zkML这个方案是基于halo2的方案。

实验数据3

该实验研究了Sequence Length对生成证明的时间,生成证明的大小,以及验证时间的影响。Sequence Length是模型输入文本的长度。

相关推荐
HalvmånEver几秒前
AI 工具实战测评:从技术性能到场景落地的全方位解析
人工智能·ai
碧海银沙音频科技研究院10 分钟前
论文写作word插入公式显示灰色解决办法
人工智能·深度学习·算法
O561 6O623O7 安徽正华露13 分钟前
露,AI人工智能Barnes迷宫 AI人工智能自动记录水迷宫
人工智能
十铭忘26 分钟前
SAM2跟踪的理解6——mask decoder
人工智能·计算机视觉
不会计算机的g_c__b33 分钟前
AI Agent 三大核心组件解析:规划、记忆与工具使用,构建真正智能体
人工智能
听风吹等浪起35 分钟前
机器学习算法:随机梯度下降算法
人工智能·深度学习·算法·机器学习
Yuner200035 分钟前
Python机器学习:从零基础到深度实战
人工智能·python·机器学习
落羽的落羽36 分钟前
【C++】哈希扩展——位图和布隆过滤器的介绍与实现
linux·服务器·开发语言·c++·人工智能·算法·机器学习
拉姆哥的小屋37 分钟前
【深度学习实战】基于CyclePatch框架的电池寿命预测:从NASA数据集到Transformer模型的完整实现
人工智能·深度学习·transformer
speop39 分钟前
【datawhale组队学习】TASK01|课程导论:站在认知范式的临界点
人工智能·学习