[论文泛读]zkLLM: Zero Knowledge Proofs for Large Language models

文章目录

介绍

这篇文章发在CCS2024,CCS是密码学领域的顶会。作者是来自加拿大的University of Waterloo。文章对大语言模型像GPT和LLM等大语言模型实现了零知识可验证执行,但不涉及零知识可验证训练。个人觉得这是一篇值得精读的一篇文章。文章的方案与现存的RISC-ZERO和EZKL或者Halo2的方案(zkML)不同。文中使用完全并行化的 CUDA ,同时对于拥有 130 亿个参数的 LLM,这篇文章的方法能够在 15 分钟内为整个推理过程生成正确性证明。生成的证明大小不到 200 kB。(使用ezkl的方案使用nanoGPT参数大概40w实现零知识可验证执行所需要的时间2小时,而这篇论文的方案有着质的提升)。

实验数据

实验数据1

论文中分别对大语言模型进行证明生成的时间,证明大小以及验证时间进行了测量。

实验数据2

论文中与zkML的生成证明的时间进行了比较,zk LLM方案的生成证明的时间远远低于zkML生成证明的时间。zkML这个方案是基于halo2的方案。

实验数据3

该实验研究了Sequence Length对生成证明的时间,生成证明的大小,以及验证时间的影响。Sequence Length是模型输入文本的长度。

相关推荐
yun68539923 分钟前
ai相关技术了解之n8n简单练习及理解
人工智能·n8n
Python_Study202517 分钟前
工程材料企业如何通过智慧获客软件破解市场困局:方法论、架构与实践
大数据·网络·数据结构·人工智能·架构
紧固件研究社21 分钟前
紧固件制造设备基础知识大全
人工智能·制造·紧固件
DN202026 分钟前
AI销售机器人优质生产厂家
人工智能·机器人
南山乐只27 分钟前
Qwen Code + OpenSpec 实战指南:AI 驱动开发的从安装到落地
java·人工智能·后端
jonssonyan34 分钟前
我又发布新作品了,PetPhoto:一键生成 AI 宠物写真
人工智能·个人开发·宠物
AI科技星36 分钟前
从质能关系到时空几何:光速飞行理论的框架对比与逻辑验证
服务器·人工智能·线性代数·算法·矩阵
newsxun37 分钟前
科技为刃,破界解锁全生命周期营养新时代
大数据·人工智能·科技
WJSKad12351 小时前
基于改进YOLO11的超市商品与电子设备多类别目标检测方法C3k2-ConvAttn
人工智能·目标检测·计算机视觉
wangmengxxw1 小时前
SpringAi-mcp高德
人工智能·高德·springai·mcp