[论文泛读]zkLLM: Zero Knowledge Proofs for Large Language models

文章目录

介绍

这篇文章发在CCS2024,CCS是密码学领域的顶会。作者是来自加拿大的University of Waterloo。文章对大语言模型像GPT和LLM等大语言模型实现了零知识可验证执行,但不涉及零知识可验证训练。个人觉得这是一篇值得精读的一篇文章。文章的方案与现存的RISC-ZERO和EZKL或者Halo2的方案(zkML)不同。文中使用完全并行化的 CUDA ,同时对于拥有 130 亿个参数的 LLM,这篇文章的方法能够在 15 分钟内为整个推理过程生成正确性证明。生成的证明大小不到 200 kB。(使用ezkl的方案使用nanoGPT参数大概40w实现零知识可验证执行所需要的时间2小时,而这篇论文的方案有着质的提升)。

实验数据

实验数据1

论文中分别对大语言模型进行证明生成的时间,证明大小以及验证时间进行了测量。

实验数据2

论文中与zkML的生成证明的时间进行了比较,zk LLM方案的生成证明的时间远远低于zkML生成证明的时间。zkML这个方案是基于halo2的方案。

实验数据3

该实验研究了Sequence Length对生成证明的时间,生成证明的大小,以及验证时间的影响。Sequence Length是模型输入文本的长度。

相关推荐
摘星编程9 分钟前
解析CANN ops-transformer的FlashAttention算子:注意力机制的内存优化
人工智能·深度学习·transformer
caoz34 分钟前
AI的春节档
大数据·人工智能·深度学习·机器学习·计算机视觉
硅谷秋水39 分钟前
用于机器人控制的因果世界建模
深度学习·机器学习·计算机视觉·语言模型·机器人
桂花饼1 小时前
2026大模型新格局:智谱GLM-5发布,DSA+MoE架构如何破解落地痛点?
人工智能·架构·sora2·gemini 3·gpt-5.2·codex-max·glm-5
文艺小码农1 小时前
PEFT 库中文本生成LoRA 教程
人工智能·深度学习·语言模型·自然语言处理·集成学习
YongCheng_Liang1 小时前
零基础学 AI:AI 工程化部署与项目实战(从优化到落地全指南)
人工智能
励ℳ2 小时前
【CNN网络入门】基于PyTorch的MNIST手写数字识别:从数据准备到模型部署全流程详解
人工智能·pytorch·深度学习
香芋Yu2 小时前
【深度学习教程——05_生成模型(Generative)】25_扩散模型为什么能生成高质量图像?Diffusion数学推导
人工智能·深度学习
乐鑫科技 Espressif2 小时前
基于 ESP32-P4 的工业级智能机械臂设计与实现
人工智能·乐鑫科技