[论文泛读]zkLLM: Zero Knowledge Proofs for Large Language models

文章目录

介绍

这篇文章发在CCS2024,CCS是密码学领域的顶会。作者是来自加拿大的University of Waterloo。文章对大语言模型像GPT和LLM等大语言模型实现了零知识可验证执行,但不涉及零知识可验证训练。个人觉得这是一篇值得精读的一篇文章。文章的方案与现存的RISC-ZERO和EZKL或者Halo2的方案(zkML)不同。文中使用完全并行化的 CUDA ,同时对于拥有 130 亿个参数的 LLM,这篇文章的方法能够在 15 分钟内为整个推理过程生成正确性证明。生成的证明大小不到 200 kB。(使用ezkl的方案使用nanoGPT参数大概40w实现零知识可验证执行所需要的时间2小时,而这篇论文的方案有着质的提升)。

实验数据

实验数据1

论文中分别对大语言模型进行证明生成的时间,证明大小以及验证时间进行了测量。

实验数据2

论文中与zkML的生成证明的时间进行了比较,zk LLM方案的生成证明的时间远远低于zkML生成证明的时间。zkML这个方案是基于halo2的方案。

实验数据3

该实验研究了Sequence Length对生成证明的时间,生成证明的大小,以及验证时间的影响。Sequence Length是模型输入文本的长度。

相关推荐
Guheyunyi几秒前
智慧消防管理平台的关键技术突破与创新
大数据·运维·人工智能·安全·音视频
PEARL的AI指南3 分钟前
智启AI零售营销实践:案例复盘与效果分享
人工智能·零售
杀生丸学AI4 分钟前
【视频生成】HY-World 1.5:实时延迟和几何一致的交互式世界模型系统(腾讯混元)
人工智能·深度学习·3d·音视频·transformer·三维重建
人工智能培训11 分钟前
AIGC技术与进展(2)
人工智能·深度学习·机器学习·大模型·aigc·ai工程师证书·ai证书
一见18 分钟前
如何安装 dlib 和 OpenCV(不带 Python 绑定)
人工智能·python·opencv
Liue6123123120 分钟前
YOLO11-LADH改进:无人机与鸟类目标检测的精准识别方案
人工智能·目标检测·无人机
够快云库22 分钟前
激活数据要素“乘数效应”:如何筑牢国家数据科技创新的微观底座?
人工智能·企业文件安全·企业文件管理
算法哥25 分钟前
使用GPU加速的pytorch框架
人工智能
IT 行者26 分钟前
Claude之父AI编程技巧十三:质量改进实践——让AI持续进化的秘密武器
人工智能·ai编程
笑脸惹桃花27 分钟前
目标检测数据集——纺织品织物缺陷检测数据集
人工智能·yolo·目标检测·计算机视觉