[论文泛读]zkLLM: Zero Knowledge Proofs for Large Language models

文章目录

介绍

这篇文章发在CCS2024,CCS是密码学领域的顶会。作者是来自加拿大的University of Waterloo。文章对大语言模型像GPT和LLM等大语言模型实现了零知识可验证执行,但不涉及零知识可验证训练。个人觉得这是一篇值得精读的一篇文章。文章的方案与现存的RISC-ZERO和EZKL或者Halo2的方案(zkML)不同。文中使用完全并行化的 CUDA ,同时对于拥有 130 亿个参数的 LLM,这篇文章的方法能够在 15 分钟内为整个推理过程生成正确性证明。生成的证明大小不到 200 kB。(使用ezkl的方案使用nanoGPT参数大概40w实现零知识可验证执行所需要的时间2小时,而这篇论文的方案有着质的提升)。

实验数据

实验数据1

论文中分别对大语言模型进行证明生成的时间,证明大小以及验证时间进行了测量。

实验数据2

论文中与zkML的生成证明的时间进行了比较,zk LLM方案的生成证明的时间远远低于zkML生成证明的时间。zkML这个方案是基于halo2的方案。

实验数据3

该实验研究了Sequence Length对生成证明的时间,生成证明的大小,以及验证时间的影响。Sequence Length是模型输入文本的长度。

相关推荐
lisw052 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623324 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛4 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI4 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus4 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声4 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API4 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
咚咚王者4 小时前
人工智能之数据分析 numpy:第十三章 工具衔接与迁移
人工智能·数据分析·numpy
咚咚王者4 小时前
人工智能之数据分析 numpy:第九章 数组运算(二)
人工智能·数据分析·numpy
YangYang9YangYan5 小时前
网络安全专业职业能力认证发展路径指南
大数据·人工智能·安全·web安全