[论文泛读]zkLLM: Zero Knowledge Proofs for Large Language models

文章目录

介绍

这篇文章发在CCS2024,CCS是密码学领域的顶会。作者是来自加拿大的University of Waterloo。文章对大语言模型像GPT和LLM等大语言模型实现了零知识可验证执行,但不涉及零知识可验证训练。个人觉得这是一篇值得精读的一篇文章。文章的方案与现存的RISC-ZERO和EZKL或者Halo2的方案(zkML)不同。文中使用完全并行化的 CUDA ,同时对于拥有 130 亿个参数的 LLM,这篇文章的方法能够在 15 分钟内为整个推理过程生成正确性证明。生成的证明大小不到 200 kB。(使用ezkl的方案使用nanoGPT参数大概40w实现零知识可验证执行所需要的时间2小时,而这篇论文的方案有着质的提升)。

实验数据

实验数据1

论文中分别对大语言模型进行证明生成的时间,证明大小以及验证时间进行了测量。

实验数据2

论文中与zkML的生成证明的时间进行了比较,zk LLM方案的生成证明的时间远远低于zkML生成证明的时间。zkML这个方案是基于halo2的方案。

实验数据3

该实验研究了Sequence Length对生成证明的时间,生成证明的大小,以及验证时间的影响。Sequence Length是模型输入文本的长度。

相关推荐
Aurora-Borealis.6 分钟前
Day27 机器学习流水线
人工智能·机器学习
歌_顿9 分钟前
知识蒸馏学习总结
人工智能·算法
老吴学AI13 分钟前
系列报告九:(埃森哲)The New Rules of Platform Strategy in the Age of Agentic AI
人工智能
棒棒的皮皮15 分钟前
【深度学习】YOLO模型速度优化Checklist
人工智能·深度学习·yolo·计算机视觉
意疏1 小时前
节点小宝4.0 正式发布:一键直达,重新定义远程控制!
人工智能
一个无名的炼丹师1 小时前
GraphRAG深度解析:从原理到实战,重塑RAG检索增强生成的未来
人工智能·python·rag
Yan-英杰1 小时前
BoostKit OmniAdaptor 源码深度解析
网络·人工智能·网络协议·tcp/ip·http
用泥种荷花2 小时前
【LangChain学习笔记】Message
人工智能
阿里云大数据AI技术2 小时前
一套底座支撑多场景:高德地图基于 Paimon + StarRocks 轨迹服务实践
人工智能
云擎算力平台omniyq.com2 小时前
CES 2026观察:从“物理AI”愿景看行业算力基础设施演进
人工智能