机器学习--混淆矩阵(Confusion Matrix)

一、混淆矩阵

  • True Negative (TN): 真负类,样本的真实类别是负类,并且模型将其识别为负类,cm[0][0]。
  • False Positive (FP): 假正类,样本的真实类别是负类,但是模型将其识别为正类,cm[0][1]。
  • False Negative (FN):假负类,样本的真实类别是正类,但是模型将其识别为负类,cm[1][0]。
  • True Positive (TP): 真正类,样本的真实类别是正类,并且模型将其识别为正类,cm[1][1]。
python 复制代码
from sklearn.metrics import confusion_matrix:

By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`
is equal to the number of observations known to be in group :math:`i` and
predicted to be in group :math:`j`.in binary classification, the count of 
true negatives is:math:`C_{0,0}`, 
false negatives is :math:`C_{1,0}`, 
true positives is:math:`C_{1,1}` and 
false positives is :math:`C_{0,1}`

二、根据混响矩阵计算分类指标

对于二分类问题,可以将样例根据其真实类别与机器学习器预测类别的组合划分为:TN、FP、FN、TP。

样例总数 = TN + FP + FN + TP。

2.1 精确率(Accuracy)

精确率是最常用的分类性能指标,可以用来表示模型的精度,即模型识别正确的个数/样本的总个数。一般情况下,模型的精度越高,说明模型的效果越好。
A c c u r a c y = T P + T N T N + F P + F N + T P = 预测正确的 ( 正类 + 负类 ) 样本数 总样本数 = 预测正确的样本数 总样本数 \mathbf{Accuracy=\frac{TP+TN}{TN + FP + FN + TP}=\frac{预测正确的(正类+负类)样本数}{\color{blue} 总样本数}=\frac{预测正确的样本数}{\color{blue} 总样本数}} Accuracy=TN+FP+FN+TPTP+TN=总样本数预测正确的(正类+负类)样本数=总样本数预测正确的样本数

2.2 召回率(Recall)

召回率又称为查全率,表示的是,模型正确识别出为正类的样本的数量占总的正类样本数量的比值。一般情况下,Recall越高,说明有更多的正类样本被模型预测正确,模型的效果越好。

Recall(召回率) = Sensitivity(敏感指标,True Positive Rate,TPR)= 查全率
R e c a l l = T P T P + F N = 预测正确的正类样本数 正类正确预测为正类 + 正类误认为负类 = 预测正确的正类样本数 真实为正类的样本数 \mathbf{Recall=\frac{TP}{TP + FN}=\frac{预测正确的正类样本数}{正类正确预测为正类+正类误认为负类}=\frac{预测正确的正类样本数}{\color{blue} 真实为正类的样本数}} Recall=TP+FNTP=正类正确预测为正类+正类误认为负类预测正确的正类样本数=真实为正类的样本数预测正确的正类样本数

2.3 正确率/准确率(Precision)

又称为查准率,表示在模型识别为正类的样本中,真正为正类的样本所占的比例。
P r e c i s i o n = T P T P + F P = 预测正确的正类样本数 预测正确的正类 + 负类误认为正类 = 预测正确的正类样本数 预测为正类的样本数 \mathbf{Precision=\frac{TP}{TP + FP}=\frac{预测正确的正类样本数}{预测正确的正类+负类误认为正类}=\frac{预测正确的正类样本数}{\color{blue} 预测为正类的样本数}} Precision=TP+FPTP=预测正确的正类+负类误认为正类预测正确的正类样本数=预测为正类的样本数预测正确的正类样本数

参考链接:

https://blog.csdn.net/seagal890/article/details/105059498

https://www.cnblogs.com/wuliytTaotao/p/9285227.html

相关推荐
高工智能汽车2 小时前
“融资热潮”来临!商用车自动驾驶拐点已至?
人工智能·机器学习·自动驾驶
syker3 小时前
NEWBASIC 2.06.7 API 帮助与用户使用手册
开发语言·人工智能·机器学习·自动化
CAE3205 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
深圳佛手15 小时前
AI 编程工具Claude Code 介绍
人工智能·python·机器学习·langchain
koo36416 小时前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
程序猿追18 小时前
轻量级云原生体验:在OpenEuler 25.09上快速部署单节点K3s
人工智能·科技·机器学习·unity·游戏引擎
程序猿追19 小时前
异腾910B NPU实战:vLLM模型深度测评与部署指南
运维·服务器·人工智能·机器学习·架构
antonytyler20 小时前
机器学习实践项目(二)- 房价预测增强篇 - 模型训练与评估:从多模型对比到小网格微调
人工智能·机器学习
星释1 天前
Rust 练习册 :Phone Number与电话号码处理
开发语言·机器学习·rust
大大dxy大大1 天前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归