机器学习--混淆矩阵(Confusion Matrix)

一、混淆矩阵

  • True Negative (TN): 真负类,样本的真实类别是负类,并且模型将其识别为负类,cm[0][0]。
  • False Positive (FP): 假正类,样本的真实类别是负类,但是模型将其识别为正类,cm[0][1]。
  • False Negative (FN):假负类,样本的真实类别是正类,但是模型将其识别为负类,cm[1][0]。
  • True Positive (TP): 真正类,样本的真实类别是正类,并且模型将其识别为正类,cm[1][1]。
python 复制代码
from sklearn.metrics import confusion_matrix:

By definition a confusion matrix :math:`C` is such that :math:`C_{i, j}`
is equal to the number of observations known to be in group :math:`i` and
predicted to be in group :math:`j`.in binary classification, the count of 
true negatives is:math:`C_{0,0}`, 
false negatives is :math:`C_{1,0}`, 
true positives is:math:`C_{1,1}` and 
false positives is :math:`C_{0,1}`

二、根据混响矩阵计算分类指标

对于二分类问题,可以将样例根据其真实类别与机器学习器预测类别的组合划分为:TN、FP、FN、TP。

样例总数 = TN + FP + FN + TP。

2.1 精确率(Accuracy)

精确率是最常用的分类性能指标,可以用来表示模型的精度,即模型识别正确的个数/样本的总个数。一般情况下,模型的精度越高,说明模型的效果越好。
A c c u r a c y = T P + T N T N + F P + F N + T P = 预测正确的 ( 正类 + 负类 ) 样本数 总样本数 = 预测正确的样本数 总样本数 \mathbf{Accuracy=\frac{TP+TN}{TN + FP + FN + TP}=\frac{预测正确的(正类+负类)样本数}{\color{blue} 总样本数}=\frac{预测正确的样本数}{\color{blue} 总样本数}} Accuracy=TN+FP+FN+TPTP+TN=总样本数预测正确的(正类+负类)样本数=总样本数预测正确的样本数

2.2 召回率(Recall)

召回率又称为查全率,表示的是,模型正确识别出为正类的样本的数量占总的正类样本数量的比值。一般情况下,Recall越高,说明有更多的正类样本被模型预测正确,模型的效果越好。

Recall(召回率) = Sensitivity(敏感指标,True Positive Rate,TPR)= 查全率
R e c a l l = T P T P + F N = 预测正确的正类样本数 正类正确预测为正类 + 正类误认为负类 = 预测正确的正类样本数 真实为正类的样本数 \mathbf{Recall=\frac{TP}{TP + FN}=\frac{预测正确的正类样本数}{正类正确预测为正类+正类误认为负类}=\frac{预测正确的正类样本数}{\color{blue} 真实为正类的样本数}} Recall=TP+FNTP=正类正确预测为正类+正类误认为负类预测正确的正类样本数=真实为正类的样本数预测正确的正类样本数

2.3 正确率/准确率(Precision)

又称为查准率,表示在模型识别为正类的样本中,真正为正类的样本所占的比例。
P r e c i s i o n = T P T P + F P = 预测正确的正类样本数 预测正确的正类 + 负类误认为正类 = 预测正确的正类样本数 预测为正类的样本数 \mathbf{Precision=\frac{TP}{TP + FP}=\frac{预测正确的正类样本数}{预测正确的正类+负类误认为正类}=\frac{预测正确的正类样本数}{\color{blue} 预测为正类的样本数}} Precision=TP+FPTP=预测正确的正类+负类误认为正类预测正确的正类样本数=预测为正类的样本数预测正确的正类样本数

参考链接:

https://blog.csdn.net/seagal890/article/details/105059498

https://www.cnblogs.com/wuliytTaotao/p/9285227.html

相关推荐
正义的彬彬侠8 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
羊小猪~~25 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
正义的彬彬侠1 小时前
【scikit-learn 1.2版本后】sklearn.datasets中load_boston报错 使用 fetch_openml 函数来加载波士顿房价
python·机器学习·sklearn
资源补给站2 小时前
论文2—《基于柔顺控制的智能神经导航手术机器人系统设计》文献阅读分析报告
机器学习·机器人·手术机器人
武子康2 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
___Dream2 小时前
【CTFN】基于耦合翻译融合网络的多模态情感分析的层次学习
人工智能·深度学习·机器学习·transformer·人机交互
西柚小萌新4 小时前
8.机器学习--决策树
人工智能·决策树·机器学习
阡之尘埃12 小时前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
Java Fans16 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习
慕卿扬17 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn