论文阅读-Transformer Layers as Painters

1. 摘要

尽管大语言模型现在已经被广泛的应用于各种任务,但是目前对其并没有一个很好的认知。为了弄清楚删除和重组预训练模型不同层的影响,本文设计了一系列的实验。通过实验表明,预训练语言模型中的lower和final layers与中间层分布不一致,并且中间层有着惊人的一致性。

2. 模型和benchmark

  • 模型:BERT-Large和Llama2
    • llama-7B:32layers, 每层包括202M参数
    • llava-13B:40layers
    • llava-70B:80layers
    • BERT-large:24layers和340M参数
  • benchmark for llama2
    • ARC:science exam question
    • HellaSwag:commonsense
    • GSM8K:Math Word Problems
    • WinoGrande:Winograd Schema Challenge
    • LAMBADA:word prediction,measures perplexity
  • benchmark for bert:
    • GLUE
      • CoLA (Corpus of Linguistic Acceptability): Acceptability judgments drawn from linguistic
        theory.
      • MRPC (Microsoft Research Paraphrase Corpus): Semantic equivalence for news sentences.
      • QNLI (Stanford Question Answering Dataset): Question answering from paragraphs.
      • RTE (The Recognizing Textual Entailment): Textual entailment
      • SST2 (The Stanford Sentiment Treebank): Sentiment prediction.
      • STSB (The Semantic Textual Similarity Benchmark): Sentence pair similarity.
      • WNLI (The Winograd Schema Challenge): Sentence referent selection.

3. 实验

3.1 Do layers "speak the same language"?

**实验:**跳过某层或将前后两层调换顺序,实验结果如下图所示:

从上图中可以看出,对中间的模型层调换前后2层顺序及跳过某层,在benchmark上效果波动不大;但first和last few layers则相反。因此,可以推断出middle layer和first及last few layers有不同的表征空间,且中间层间的表征空间比较相似。

为了更进一步验证这个猜想,衡量了在benchmark上不同层hidden state的activation值间的cosine similarity。结果如下图所示:

从上图中可以看出,模型基本有三种表征空间,"beginning","middle"和"ending"。另外,"beginning"层和"middle"层的层数似乎随着模型总层数的增加而增加,而"ending"层则会固定到单层上。

3.2 Are all the layers necessary?

实验:跳过N层,将N+1层的输出作为T-N层的输入,T为模型总层数。=> skip

从上图中可以看出,当有少量的层被跳过时,模型效果并没有降低很多。

3.3 Are middle layers all doing the same thing?

虽然中间层表征空间是一样的,那么是否表示这些层是冗余的呢?

实验:在"middle"中用中心层的参数替换其他层的参数=>middle repeat

从上图中可以看出,随着替换层数的增加,模型效果下降的越发明显。所以"middle" layer中不同层有着不同的功能。

3.4 Does the layer order matter?

实验:1. 中间层倒过来=>reverse。2. 将中间层随机打乱。

不管是随机打乱层还是倒过中间层都对模型效果有不少的影响。但随机打乱要比中间层倒装的效果要好。

3.5 Can we run the layers in parallel?

能否将不同层独立运行,然后将结果合并呢?=> parallel

除了在GSM8K数学任务上,随着并行层数的增加,模型效果有着合理的降低。

3.6 Does the order matter for some tasks more than others?

是的,在数学和推理任务上,order比较重要。在语义任务上,order就还好。

3.7 Does looping help parallelized layers?

从上图可知,并行层重复多次能够有效的改善模型效果。

从上图中可知,最佳的迭代次数(重复次数)与并行层的数量成正比。

3.8 Which variants are least harmful?

从图中可知,重复单层是效果最差的,随机中间层和并行重复策略(looped-parallel)模型效果损失最小。

  • 为什么skip要比middle repeat策略要差呢?

    从图中可以发现,skip策略跟llama2-7B模型的cosine similarity一样。而middle repeat则发生了偏移。

4. 讨论

  • 有三种不同类型的层,"beginning","middle"和"ending"
  • 中间层有某种程度的均匀,但是不冗余。
  • 模型层的执行顺序相较于语义任务,在数学和推理任务中更为重要
相关推荐
文心快码 Baidu Comate4 小时前
双十一将至,用Rules玩转电商场景提效
人工智能·ai编程·文心快码·智能编程助手·comate ai ide
瞻邈4 小时前
LION运行笔记
人工智能·深度学习
CoovallyAIHub4 小时前
外科医生离手术世界模型还有多远?首次提出SurgVeo基准,揭示AI生成手术视频的惊人差距
深度学习·算法·计算机视觉
Serverless 社区4 小时前
助力企业构建 AI 原生应用,函数计算FunctionAI 重塑模型服务与 Agent 全栈生态
大数据·人工智能
大千AI助手4 小时前
参考先验(Reference Priors)详解:理论与Python实践
人工智能·机器学习·贝叶斯·大千ai助手·参考先验·贝叶斯推断·先验
Baihai_IDP4 小时前
面向 LLM 的 GPU 系统工程方法论
人工智能·面试·gpu
北京耐用通信4 小时前
冶金车间“迷雾”重重?耐达讯自动化Profibus转光纤为HMI点亮“透视眼”!
人工智能·物联网·网络协议·网络安全·自动化
xqlily4 小时前
Prover9/Mace4 的形式化语言简介
人工智能·算法
IT_陈寒5 小时前
Redis 高并发实战:我从 5000QPS 优化到 5W+ 的7个核心策略
前端·人工智能·后端
北京耐用通信5 小时前
耐达讯自动化Profibus光纤模块:智能仪表的“生命线”,极端环境通信无忧!
人工智能·物联网·网络协议·自动化·信息与通信