什么是大模型的“幻觉”?

大模型的"幻觉"(Hallucination)指的是生成式AI模型(如GPT、BERT等)在回答问题或生成文本时,产生了并不存在或不符合事实的内容。这些内容可能看似合理且具有逻辑性,但实际上并不基于真实数据或可靠信息源。

具体表现

1、编造事实: 模型可能会生成一些完全虚构的事实、数字、引用或事件。

2、错误的信息连接: 模型可能会将不相关或错误的信息关联起来,形成一个表面上合理但实际上错误的回答。

3、未提及但推断的内容: 在缺乏明确数据的情况下,模型可能会生成它"推测"的内容,而这些推测往往是错误的。

原因

1、语言模型的训练方式: 大型语言模型是通过大量文本数据进行训练的,但它们并没有真正的"理解"能力。它们基于概率生成最可能的词语序列,而不是基于实际理解或事实。因此,它们可能会生成看似合理但实际错误的内容。

2、数据偏差: 如果训练数据中包含不准确的信息或偏见,模型可能会在生成内容时体现这些错误和偏见。

3、缺乏上下文理解: 尽管模型能够处理大量上下文信息,但它们无法像人类一样全面理解复杂的概念或细节,导致在生成内容时产生误解或错误。

如何应对

1、人工审核: 在使用大模型生成内容时,特别是涉及重要决策的信息,通常需要人工审核和验证。

2、提示优化: 通过改进提示词(prompt)或提供更详细的上下文,可以减少"幻觉"的发生。

3、多轮对话: 通过多轮对话或进一步的追问,可以帮助识别并纠正模型生成的错误内容。

"幻觉"是当前生成式AI模型的一大挑战,尤其在自动化生成内容的应用中,识别和防止这些错误显得尤为重要。

相关推荐
腾视科技30 分钟前
腾视科技TS-SG-SM7系列AI算力模组:32TOPS算力引擎,开启边缘智能新纪元
人工智能·科技
极新36 分钟前
深势科技生命科学高级业务架构师孟月:AI4S 赋能生命科学研发,数智化平台的实践与落地 | 2025极新AIGC峰会演讲实录
人工智能
Light606 小时前
破局而立:制造业软件企业的模式重构与AI赋能新路径
人工智能·云原生·工业软件·商业模式创新·ai赋能·人机协同·制造业软件
Quintus五等升6 小时前
深度学习①|线性回归的实现
人工智能·python·深度学习·学习·机器学习·回归·线性回归
natide6 小时前
text-generateion-webui模型加载器(Model Loaders)选项
人工智能·llama
野生的码农6 小时前
码农的妇产科实习记录
android·java·人工智能
TechubNews6 小时前
2026 年观察名单:基于 a16z「重大构想」,详解稳定币、RWA 及 AI Agent 等 8 大流行趋势
大数据·人工智能·区块链
脑极体6 小时前
机器人的罪与罚
人工智能·机器人
三不原则7 小时前
故障案例:容器启动失败排查(AI运维场景)——从日志分析到根因定位
运维·人工智能·kubernetes
点云SLAM7 小时前
凸优化(Convex Optimization)理论(1)
人工智能·算法·slam·数学原理·凸优化·数值优化理论·机器人应用