什么是大模型的“幻觉”?

大模型的"幻觉"(Hallucination)指的是生成式AI模型(如GPT、BERT等)在回答问题或生成文本时,产生了并不存在或不符合事实的内容。这些内容可能看似合理且具有逻辑性,但实际上并不基于真实数据或可靠信息源。

具体表现

1、编造事实: 模型可能会生成一些完全虚构的事实、数字、引用或事件。

2、错误的信息连接: 模型可能会将不相关或错误的信息关联起来,形成一个表面上合理但实际上错误的回答。

3、未提及但推断的内容: 在缺乏明确数据的情况下,模型可能会生成它"推测"的内容,而这些推测往往是错误的。

原因

1、语言模型的训练方式: 大型语言模型是通过大量文本数据进行训练的,但它们并没有真正的"理解"能力。它们基于概率生成最可能的词语序列,而不是基于实际理解或事实。因此,它们可能会生成看似合理但实际错误的内容。

2、数据偏差: 如果训练数据中包含不准确的信息或偏见,模型可能会在生成内容时体现这些错误和偏见。

3、缺乏上下文理解: 尽管模型能够处理大量上下文信息,但它们无法像人类一样全面理解复杂的概念或细节,导致在生成内容时产生误解或错误。

如何应对

1、人工审核: 在使用大模型生成内容时,特别是涉及重要决策的信息,通常需要人工审核和验证。

2、提示优化: 通过改进提示词(prompt)或提供更详细的上下文,可以减少"幻觉"的发生。

3、多轮对话: 通过多轮对话或进一步的追问,可以帮助识别并纠正模型生成的错误内容。

"幻觉"是当前生成式AI模型的一大挑战,尤其在自动化生成内容的应用中,识别和防止这些错误显得尤为重要。

相关推荐
吴佳浩6 小时前
Python入门指南(七) - YOLO检测API进阶实战
人工智能·后端·python
tap.AI7 小时前
RAG系列(二)数据准备与向量索引
开发语言·人工智能
老蒋新思维7 小时前
知识IP的长期主义:当AI成为跨越增长曲线的“第二曲线引擎”|创客匠人
大数据·人工智能·tcp/ip·机器学习·创始人ip·创客匠人·知识变现
货拉拉技术7 小时前
出海技术挑战——Lalamove智能告警降噪
人工智能·后端·监控
wei20237 小时前
汽车智能体Agent:国务院“人工智能+”行动意见 对汽车智能体领域 革命性重塑
人工智能·汽车·agent·智能体
LinkTime_Cloud8 小时前
快手遭遇T0级“黑色闪电”:一场教科书式的“协同打击”,披上了AI“智能外衣”的攻击
人工智能
PPIO派欧云8 小时前
PPIO上线MiniMax-M2.1:聚焦多语言编程与真实世界复杂任务
人工智能
隔壁阿布都8 小时前
使用LangChain4j +Springboot 实现大模型与向量化数据库协同回答
人工智能·spring boot·后端
Coding茶水间8 小时前
基于深度学习的水面垃圾检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
乐迪信息8 小时前
乐迪信息:煤矿皮带区域安全管控:人员违规闯入智能识别
大数据·运维·人工智能·物联网·安全