什么是大模型的“幻觉”?

大模型的"幻觉"(Hallucination)指的是生成式AI模型(如GPT、BERT等)在回答问题或生成文本时,产生了并不存在或不符合事实的内容。这些内容可能看似合理且具有逻辑性,但实际上并不基于真实数据或可靠信息源。

具体表现

1、编造事实: 模型可能会生成一些完全虚构的事实、数字、引用或事件。

2、错误的信息连接: 模型可能会将不相关或错误的信息关联起来,形成一个表面上合理但实际上错误的回答。

3、未提及但推断的内容: 在缺乏明确数据的情况下,模型可能会生成它"推测"的内容,而这些推测往往是错误的。

原因

1、语言模型的训练方式: 大型语言模型是通过大量文本数据进行训练的,但它们并没有真正的"理解"能力。它们基于概率生成最可能的词语序列,而不是基于实际理解或事实。因此,它们可能会生成看似合理但实际错误的内容。

2、数据偏差: 如果训练数据中包含不准确的信息或偏见,模型可能会在生成内容时体现这些错误和偏见。

3、缺乏上下文理解: 尽管模型能够处理大量上下文信息,但它们无法像人类一样全面理解复杂的概念或细节,导致在生成内容时产生误解或错误。

如何应对

1、人工审核: 在使用大模型生成内容时,特别是涉及重要决策的信息,通常需要人工审核和验证。

2、提示优化: 通过改进提示词(prompt)或提供更详细的上下文,可以减少"幻觉"的发生。

3、多轮对话: 通过多轮对话或进一步的追问,可以帮助识别并纠正模型生成的错误内容。

"幻觉"是当前生成式AI模型的一大挑战,尤其在自动化生成内容的应用中,识别和防止这些错误显得尤为重要。

相关推荐
HaiLang_IT1 分钟前
基于图像处理与原型网络的小样本手语骨骼动作识别研究
网络·图像处理·人工智能
星川皆无恙2 分钟前
从“盲人摸象“到“全面感知“:多模态学习的进化之路
大数据·人工智能·python·深度学习·学习
白日做梦Q3 分钟前
U-Net及其变体:医学图像分割的里程碑
人工智能·深度学习·神经网络·计算机视觉
摸鱼仙人~4 分钟前
深度学习训练中的隐形杀手:内部协变量偏移与批量归一化
深度学习·transformer·embedding
落叶,听雪7 分钟前
河南AI建站选哪家
人工智能·python
悟能不能悟9 分钟前
目前流行的AI IDE都有哪些
ide·人工智能
小霖家的混江龙10 分钟前
不再费脑, 写给 AI 爱好者的矩阵 (Matrix) 入门指南
人工智能·llm·aigc
一只大侠的侠12 分钟前
融合Transformer与CNN的多模态时间序列预测模型
深度学习·cnn·transformer
小龙13 分钟前
【学习笔记】PyTorch 中.pth文件格式解析与可视化
人工智能·pytorch·笔记·学习
Gavin在路上14 分钟前
AI学习之AI应用框架选型篇
人工智能·学习