什么是大模型的“幻觉”?

大模型的"幻觉"(Hallucination)指的是生成式AI模型(如GPT、BERT等)在回答问题或生成文本时,产生了并不存在或不符合事实的内容。这些内容可能看似合理且具有逻辑性,但实际上并不基于真实数据或可靠信息源。

具体表现

1、编造事实: 模型可能会生成一些完全虚构的事实、数字、引用或事件。

2、错误的信息连接: 模型可能会将不相关或错误的信息关联起来,形成一个表面上合理但实际上错误的回答。

3、未提及但推断的内容: 在缺乏明确数据的情况下,模型可能会生成它"推测"的内容,而这些推测往往是错误的。

原因

1、语言模型的训练方式: 大型语言模型是通过大量文本数据进行训练的,但它们并没有真正的"理解"能力。它们基于概率生成最可能的词语序列,而不是基于实际理解或事实。因此,它们可能会生成看似合理但实际错误的内容。

2、数据偏差: 如果训练数据中包含不准确的信息或偏见,模型可能会在生成内容时体现这些错误和偏见。

3、缺乏上下文理解: 尽管模型能够处理大量上下文信息,但它们无法像人类一样全面理解复杂的概念或细节,导致在生成内容时产生误解或错误。

如何应对

1、人工审核: 在使用大模型生成内容时,特别是涉及重要决策的信息,通常需要人工审核和验证。

2、提示优化: 通过改进提示词(prompt)或提供更详细的上下文,可以减少"幻觉"的发生。

3、多轮对话: 通过多轮对话或进一步的追问,可以帮助识别并纠正模型生成的错误内容。

"幻觉"是当前生成式AI模型的一大挑战,尤其在自动化生成内容的应用中,识别和防止这些错误显得尤为重要。

相关推荐
夏天是冰红茶1 小时前
DINO原理详解
人工智能·深度学习·机器学习
吴佳浩3 小时前
Python入门指南(六) - 搭建你的第一个YOLO检测API
人工智能·后端·python
SHIPKING3934 小时前
【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
人工智能
yong99904 小时前
基于SIFT特征提取与匹配的MATLAB图像拼接
人工智能·计算机视觉·matlab
知秋一叶1234 小时前
Miloco 深度打通 Home Assistant,实现设备级精准控制
人工智能·智能家居
春日见5 小时前
在虚拟机上面无法正启动机械臂的控制launch文件
linux·运维·服务器·人工智能·驱动开发·ubuntu
————A5 小时前
强化学习----->轨迹、回报、折扣因子和回合
人工智能·python
CareyWYR5 小时前
每周AI论文速递(251215-251219)
人工智能
weixin_409383126 小时前
在kaggle训练Qwen/Qwen2.5-1.5B-Instruct 通过中二时期qq空间记录作为训练数据 训练出中二的模型为目标 第一次训练 好像太二了
人工智能·深度学习·机器学习·qwen
JoannaJuanCV6 小时前
自动驾驶—CARLA仿真(22)manual_control_steeringwheel demo
人工智能·自动驾驶·pygame·carla