什么是大模型的“幻觉”?

大模型的"幻觉"(Hallucination)指的是生成式AI模型(如GPT、BERT等)在回答问题或生成文本时,产生了并不存在或不符合事实的内容。这些内容可能看似合理且具有逻辑性,但实际上并不基于真实数据或可靠信息源。

具体表现

1、编造事实: 模型可能会生成一些完全虚构的事实、数字、引用或事件。

2、错误的信息连接: 模型可能会将不相关或错误的信息关联起来,形成一个表面上合理但实际上错误的回答。

3、未提及但推断的内容: 在缺乏明确数据的情况下,模型可能会生成它"推测"的内容,而这些推测往往是错误的。

原因

1、语言模型的训练方式: 大型语言模型是通过大量文本数据进行训练的,但它们并没有真正的"理解"能力。它们基于概率生成最可能的词语序列,而不是基于实际理解或事实。因此,它们可能会生成看似合理但实际错误的内容。

2、数据偏差: 如果训练数据中包含不准确的信息或偏见,模型可能会在生成内容时体现这些错误和偏见。

3、缺乏上下文理解: 尽管模型能够处理大量上下文信息,但它们无法像人类一样全面理解复杂的概念或细节,导致在生成内容时产生误解或错误。

如何应对

1、人工审核: 在使用大模型生成内容时,特别是涉及重要决策的信息,通常需要人工审核和验证。

2、提示优化: 通过改进提示词(prompt)或提供更详细的上下文,可以减少"幻觉"的发生。

3、多轮对话: 通过多轮对话或进一步的追问,可以帮助识别并纠正模型生成的错误内容。

"幻觉"是当前生成式AI模型的一大挑战,尤其在自动化生成内容的应用中,识别和防止这些错误显得尤为重要。

相关推荐
高锰酸钾_1 天前
机器学习-L1正则化和L2正则化解决过拟合问题
人工智能·python·机器学习
${王小剑}1 天前
深度学习损失函数
人工智能·深度学习
啊巴矲1 天前
小白从零开始勇闯人工智能:机器学习初级篇(PCA数据降维)
人工智能·机器学习
geneculture1 天前
融智学形式本体论:一种基于子全域与超子域的统一认知架构
大数据·人工智能·哲学与科学统一性·信息融智学·融智时代(杂志)
笔墨新城1 天前
Agent Spring Ai 开发之 (一) 基础配置
人工智能·spring·agent
微软技术栈1 天前
Microsoft AI Genius | 解锁多模态智能体构建,从 0 到 1 极速上手!
人工智能
laplace01231 天前
# 第六章 agent框架开发实践 - 学习笔记
人工智能·笔记·学习·语言模型·agent
空中楼阁,梦幻泡影1 天前
LoRA 详细解析,使用LoRA 方式对模型进行微调详细操作指南
运维·服务器·人工智能·机器学习·语言模型
AI即插即用1 天前
即插即用系列(代码实践)专栏介绍
开发语言·人工智能·深度学习·计算机视觉
Keep__Fighting1 天前
【神经网络的训练策略选取】
人工智能·深度学习·神经网络·算法