深度学习中常用概念总结

最近在做深度学习,里面涉及到很多概念,有的名称都差不多容易记混。所以写这篇文章总结一下。眼过千遍不如手过一遍。

  1. 轮数(Epochs):

一轮(Epoch)指的是整个训练数据集在训练过程中被完整使用一次。每个 Epoch 包含多个批次(batches),在每个 Epoch 结束后,模型通常会在验证集上进行评估。

  1. 步数(Steps):

步数(Steps)通常指的是训练过程中的迭代次数。在每个 Step 中,模型进行一次前向传播和后向传播。

  1. 批处理大小(Batch Size):

批处理大小(Batch Size)是指每次迭代中用于训练的样本数量。它影响计算资源的利用和模型训练的稳定性。

  1. 微批处理大小(Micro-batch-size):

微批处理大小是在模型并行或流水线并行中使用的概念,指的是在每个 GPU 或每个并行阶段中处理的批次大小。它是批处理大小的进一步划分。

  1. 学习率(Learning Rate):

学习率是优化算法中用于调整模型权重的步长。它决定了在每次迭代中参数更新的幅度。

  1. 训练吞吐量:

训练吞吐量指模型训练过程中单位时间内能够处理的数据量,通常以样本/秒或批次/秒来衡量。

  1. 加速器内存(Accelerator Memory):

加速器内存是专用于支持 GPU 或 TPU 等硬件加速器的高性能计算任务的内存,用于存储模型参数、中间计算结果等。

  1. 词大小(Word-size):

在深度学习中,词大小通常指的是模型中词嵌入(Word Embedding)的维度,即表示每个词的向量的长度。

  1. 数据并行(Data Parallel):

数据并行是一种并行化技术,通过将数据集分割成多个批次分配到多个处理器上同时训练,以此来加速训练过程。

  1. 上下文并行大小(Context Parallel Size):

上下文并行大小可能是指在使用特定深度学习框架时,如 Megatron-LM 中的设置,用于控制跨多个 GPU 分配模型的不同部分的方式。

  1. 张量模型并行大小(Tensor Model Parallel Size):

张量模型并行大小是指在模型并行中,模型的张量如何分配到不同的处理器上。它决定了模型的哪一部分将在不同的 GPU 上计算。

  1. 管道模型并行大小(Pipeline Model Parallel Size):

管道模型并行大小是指将模型分成多个阶段,每个阶段可以并行处理不同的数据微批次,从而提高计算效率和资源利用率。

相关推荐
GAOJ_K2 分钟前
滚珠螺杆的内循环与外循环有何差异?
人工智能·科技·机器人·自动化·制造
Narrastory10 分钟前
解剖注意力:从零构建Transformer的终极指南
深度学习
这张生成的图像能检测吗13 分钟前
(论文速读)Nickel and Diming Your GAN:通过知识蒸馏提高GAN效率的双重方法
人工智能·生成对抗网络·计算机视觉·知识蒸馏·图像生成·模型压缩技术
中国胖子风清扬24 分钟前
Spring AI Alibaba + Ollama 实战:基于本地 Qwen3 的 Spring Boot 大模型应用
java·人工智能·spring boot·后端·spring·spring cloud·ai
A7bert77728 分钟前
【YOLOv5seg部署RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·深度学习·yolo·目标检测
不会计算机的g_c__b32 分钟前
AI Agent:从概念到实践,解析智能体的未来趋势与挑战
人工智能
serve the people1 小时前
tensorflow 零基础吃透:RaggedTensor 的不规则形状与广播机制 2
人工智能·python·tensorflow
donkey_19931 小时前
ShiftwiseConv: Small Convolutional Kernel with Large Kernel Effect
人工智能·深度学习·目标检测·计算机视觉·语义分割·实例分割
周名彥1 小时前
二十四芒星非硅基华夏原生AGI模型集群·全球发布声明(S∅-Omega级·纯念主权版)
人工智能·去中心化·知识图谱·量子计算·agi
周名彥1 小时前
1Ω1[特殊字符]⊗雙朕周名彥實際物理載體|二十四芒星物理集群载体群:超級數據中心·AGI·IPO·GUI·智能體工作流
人工智能·神经网络·知识图谱·量子计算·agi