深度学习中常用概念总结

最近在做深度学习,里面涉及到很多概念,有的名称都差不多容易记混。所以写这篇文章总结一下。眼过千遍不如手过一遍。

  1. 轮数(Epochs):

一轮(Epoch)指的是整个训练数据集在训练过程中被完整使用一次。每个 Epoch 包含多个批次(batches),在每个 Epoch 结束后,模型通常会在验证集上进行评估。

  1. 步数(Steps):

步数(Steps)通常指的是训练过程中的迭代次数。在每个 Step 中,模型进行一次前向传播和后向传播。

  1. 批处理大小(Batch Size):

批处理大小(Batch Size)是指每次迭代中用于训练的样本数量。它影响计算资源的利用和模型训练的稳定性。

  1. 微批处理大小(Micro-batch-size):

微批处理大小是在模型并行或流水线并行中使用的概念,指的是在每个 GPU 或每个并行阶段中处理的批次大小。它是批处理大小的进一步划分。

  1. 学习率(Learning Rate):

学习率是优化算法中用于调整模型权重的步长。它决定了在每次迭代中参数更新的幅度。

  1. 训练吞吐量:

训练吞吐量指模型训练过程中单位时间内能够处理的数据量,通常以样本/秒或批次/秒来衡量。

  1. 加速器内存(Accelerator Memory):

加速器内存是专用于支持 GPU 或 TPU 等硬件加速器的高性能计算任务的内存,用于存储模型参数、中间计算结果等。

  1. 词大小(Word-size):

在深度学习中,词大小通常指的是模型中词嵌入(Word Embedding)的维度,即表示每个词的向量的长度。

  1. 数据并行(Data Parallel):

数据并行是一种并行化技术,通过将数据集分割成多个批次分配到多个处理器上同时训练,以此来加速训练过程。

  1. 上下文并行大小(Context Parallel Size):

上下文并行大小可能是指在使用特定深度学习框架时,如 Megatron-LM 中的设置,用于控制跨多个 GPU 分配模型的不同部分的方式。

  1. 张量模型并行大小(Tensor Model Parallel Size):

张量模型并行大小是指在模型并行中,模型的张量如何分配到不同的处理器上。它决定了模型的哪一部分将在不同的 GPU 上计算。

  1. 管道模型并行大小(Pipeline Model Parallel Size):

管道模型并行大小是指将模型分成多个阶段,每个阶段可以并行处理不同的数据微批次,从而提高计算效率和资源利用率。

相关推荐
沃达德软件4 小时前
智慧警务图像融合大数据
大数据·图像处理·人工智能·目标检测·计算机视觉·目标跟踪
QxQ么么4 小时前
移远通信(桂林)26校招-助理AI算法工程师-面试纪录
人工智能·python·算法·面试
愤怒的可乐5 小时前
从零构建大模型智能体:统一消息格式,快速接入大语言模型
人工智能·语言模型·自然语言处理
每天一个java小知识6 小时前
AI Agent
人工智能
猫头虎6 小时前
如何解决 pip install 编译报错 fatal error: hdf5.h: No such file or directory(h5py)问题
人工智能·python·pycharm·开源·beautifulsoup·ai编程·pip
龙赤子6 小时前
人工智能AI的大框架
人工智能
比奥利奥还傲.7 小时前
本地+AI+大模型自由用!Cherry+Studio打破局域网限制
人工智能
雪碧聊技术7 小时前
深度学习、机器学习、人工智能三者的关系
人工智能·深度学习·机器学习
β添砖java7 小时前
机器学习初级
人工智能·机器学习
陈奕昆7 小时前
n8n实战营Day3:电商订单全流程自动化·需求分析与流程拆解
大数据·开发语言·人工智能·自动化·需求分析·n8n