分布式知识总结(一致性Hash算法)

文章收录在网站:http://hardyfish.top/

文章收录在网站:http://hardyfish.top/

文章收录在网站:http://hardyfish.top/

文章收录在网站:http://hardyfish.top/

一致性Hash算法

假如有三台服务器编号node0node1node2,现在有3000万个key,希望可以将这些个key均匀的缓存到三台机器上?

可以使用取模算法hash(key)% N,对key进行hash运算后取模,N是机器的数量。

但服务器数量N发生变化后hash(key)% N计算的结果也会随之变化。

一致性hash算法本质上也是一种取模算法,不过不同于上边按服务器数量取模,一致性hash是对固定值2^32取模。

IPv4的地址是4组8位2进制数组成,所以用2^32可以保证每个IP地址会有唯一的映射。

将这2^32个值抽象成一个圆环,圆环的正上方的点代表0,顺时针排列,以此类推,1、2、3、4、5、6......直到2^32-1,而这个由2的32次方个点组成的圆环统称为hash环

服务器映射到hash环:

使用服务器IP地址进行hash计算,用哈希后的结果对2^32取模,结果一定是一个0到2^32-1之间的整数,而这个整数映射在hash环上的位置代表了一个服务器,依次将node0node1node2三个缓存服务器映射到hash环上。

一致性hash的优势:

假如业务量激增,系统需要进行扩容增加一台服务器node-4,刚好node-4被映射到node-1node-2之间,沿顺时针方向对象映射节点,发现原本缓存在node-2上的对象key-4key-5被重新映射到了node-4上,而整个扩容过程中受影响的只有node-4node-1节点之间的一小部分数据。

假如node-1节点宕机,沿顺时针方向对象映射节点,缓存在node-1上的对象key-1被重新映射到了node-4上,此时受影响的数据只有node-0node-1之间的一小部分数据。

数据偏斜问题:

在服务器节点数量太少的情况下,很容易因为节点分布不均匀而造成数据倾斜 问题,被缓存的对象大部分缓存在node-4服务器上,导致其他节点资源浪费,系统压力大部分集中在node-4节点上,这样的集群是非常不健康的。

一致性Hash算法引入了一个虚拟节点机制,即对每个服务器节点计算出多个hash值,它们都会映射到hash环上,映射到这些虚拟节点的对象key,最终会缓存在真实的节点上。

一致性hash的应用场景:

一致性hash在分布式系统中应该是实现负载均衡的首选算法,比如日常使用较多的缓存中间件memcachedredis集群都有用到它。

相关推荐
A懿轩A10 分钟前
C/C++ 数据结构与算法【数组】 数组详细解析【日常学习,考研必备】带图+详细代码
c语言·数据结构·c++·学习·考研·算法·数组
古希腊掌管学习的神10 分钟前
[搜广推]王树森推荐系统——矩阵补充&最近邻查找
python·算法·机器学习·矩阵
云边有个稻草人14 分钟前
【优选算法】—复写零(双指针算法)
笔记·算法·双指针算法
半盏茶香15 分钟前
在21世纪的我用C语言探寻世界本质 ——编译和链接(编译环境和运行环境)
c语言·开发语言·c++·算法
忘梓.1 小时前
解锁动态规划的奥秘:从零到精通的创新思维解析(3)
算法·动态规划
tinker在coding3 小时前
Coding Caprice - Linked-List 1
算法·leetcode
XH华8 小时前
初识C语言之二维数组(下)
c语言·算法
Data跳动8 小时前
Spark内存都消耗在哪里了?
大数据·分布式·spark
南宫生8 小时前
力扣-图论-17【算法学习day.67】
java·学习·算法·leetcode·图论
不想当程序猿_8 小时前
【蓝桥杯每日一题】求和——前缀和
算法·前缀和·蓝桥杯