分布式知识总结(一致性Hash算法)

文章收录在网站:http://hardyfish.top/

文章收录在网站:http://hardyfish.top/

文章收录在网站:http://hardyfish.top/

文章收录在网站:http://hardyfish.top/

一致性Hash算法

假如有三台服务器编号node0node1node2,现在有3000万个key,希望可以将这些个key均匀的缓存到三台机器上?

可以使用取模算法hash(key)% N,对key进行hash运算后取模,N是机器的数量。

但服务器数量N发生变化后hash(key)% N计算的结果也会随之变化。

一致性hash算法本质上也是一种取模算法,不过不同于上边按服务器数量取模,一致性hash是对固定值2^32取模。

IPv4的地址是4组8位2进制数组成,所以用2^32可以保证每个IP地址会有唯一的映射。

将这2^32个值抽象成一个圆环,圆环的正上方的点代表0,顺时针排列,以此类推,1、2、3、4、5、6......直到2^32-1,而这个由2的32次方个点组成的圆环统称为hash环

服务器映射到hash环:

使用服务器IP地址进行hash计算,用哈希后的结果对2^32取模,结果一定是一个0到2^32-1之间的整数,而这个整数映射在hash环上的位置代表了一个服务器,依次将node0node1node2三个缓存服务器映射到hash环上。

一致性hash的优势:

假如业务量激增,系统需要进行扩容增加一台服务器node-4,刚好node-4被映射到node-1node-2之间,沿顺时针方向对象映射节点,发现原本缓存在node-2上的对象key-4key-5被重新映射到了node-4上,而整个扩容过程中受影响的只有node-4node-1节点之间的一小部分数据。

假如node-1节点宕机,沿顺时针方向对象映射节点,缓存在node-1上的对象key-1被重新映射到了node-4上,此时受影响的数据只有node-0node-1之间的一小部分数据。

数据偏斜问题:

在服务器节点数量太少的情况下,很容易因为节点分布不均匀而造成数据倾斜 问题,被缓存的对象大部分缓存在node-4服务器上,导致其他节点资源浪费,系统压力大部分集中在node-4节点上,这样的集群是非常不健康的。

一致性Hash算法引入了一个虚拟节点机制,即对每个服务器节点计算出多个hash值,它们都会映射到hash环上,映射到这些虚拟节点的对象key,最终会缓存在真实的节点上。

一致性hash的应用场景:

一致性hash在分布式系统中应该是实现负载均衡的首选算法,比如日常使用较多的缓存中间件memcachedredis集群都有用到它。

相关推荐
禁默8 分钟前
打破集群通信“内存墙”:手把手教你用 CANN SHMEM 重构 AIGC 分布式算子
分布式·重构·aigc
Wei&Yan1 小时前
数据结构——顺序表(静/动态代码实现)
数据结构·c++·算法·visual studio code
团子的二进制世界1 小时前
G1垃圾收集器是如何工作的?
java·jvm·算法
吃杠碰小鸡1 小时前
高中数学-数列-导数证明
前端·数学·算法
故事不长丨1 小时前
C#线程同步:lock、Monitor、Mutex原理+用法+实战全解析
开发语言·算法·c#
long3161 小时前
Aho-Corasick 模式搜索算法
java·数据结构·spring boot·后端·算法·排序算法
近津薪荼1 小时前
dfs专题4——二叉树的深搜(验证二叉搜索树)
c++·学习·算法·深度优先
惊讶的猫2 小时前
rabbitmq初步介绍
分布式·rabbitmq
熊文豪2 小时前
探索CANN ops-nn:高性能哈希算子技术解读
算法·哈希算法·cann
小镇敲码人2 小时前
华为CANN框架中HCCL仓库的全面解析:分布式通信的引擎
分布式·华为