大模型微调--文章3

原文地址

链接:https://zhuanlan.zhihu.com/p/635848732

思考题

问题1:p-tuning为了解决什么问题?(解决)

答案:该方法的提出主要是为了解决这样一个问题:大模型的Prompt构造方式严重影响下游任务的效果。比如:GPT-3采用人工构造的模版来做上下文学习(in context learning),但人工设计的模版的变化特别敏感,加一个词或者少一个词,或者变动位置都会造成比较大的变化。

问题2:什么是NLU任务?(解决)

答案:自然语言理解,是自然语言处理(NLP)中的一个重要子领域,涉及理解和处理人类语言的语义和语法,以便机器能够从文本中提取有意义的信息。NLU任务通常涉及对文本的深层次理解,包括解析句子结构、理解上下文、推理隐含意义。

问题3:什么是P-tuning?与prefix tuning有什么区别?(解决)

答案:prefix tuning是在每一层中插入可学习的前缀嵌入序列,而不是直接影响输入,在transformer每一层都添加前缀;

p-tuning是直接在输入层中插入可学习的提示词(软提示),优化这些提示词以提高任务性能,仅在输入层进行更改,在其他层没有操作。

问题4:P-tuning v2的原理是怎么样的?(解决)

答案:P-tuning v2不仅仅在输入层添加软提示,还可以在模型的多个中间层或特定层添加这些提示。这种多层次的提示优化使得模型能够更好地捕捉复杂的语义信息。

问题5:prompt-tunin、prefix tuning、p-tuning和p-tuning2有什么区别和联系?(解决)

答案:p-tuning可以看作是prompt-tunin的发展;p-tuning2可以看作是prefix tuning的发展

问题6:文章主要讲了什么内容?文章结构是什么样的?(解决)

答案:文章主要讲了p-tuning和p-tuning是什么,以及原理是什么,和前一篇的对比。结构上也是这样的。

动手题

1:动手实践prompt-tuning、prefix tuning、p-tuning和p-tuning v2(未解决)

相关推荐
IT古董22 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
TGITCIC1 小时前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
lucky_lyovo5 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
七七&5565 小时前
2024年08月13日 Go生态洞察:Go 1.23 发布与全面深度解读
开发语言·网络·golang
java坤坤6 小时前
GoLand 项目从 0 到 1:第八天 ——GORM 命名策略陷阱与 Go 项目启动慢问题攻坚
开发语言·后端·golang
元清加油6 小时前
【Golang】:函数和包
服务器·开发语言·网络·后端·网络协议·golang
健康平安的活着6 小时前
java之 junit4单元测试Mockito的使用
java·开发语言·单元测试
AndrewHZ6 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊6 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae