大模型微调--文章3

原文地址

链接:https://zhuanlan.zhihu.com/p/635848732

思考题

问题1:p-tuning为了解决什么问题?(解决)

答案:该方法的提出主要是为了解决这样一个问题:大模型的Prompt构造方式严重影响下游任务的效果。比如:GPT-3采用人工构造的模版来做上下文学习(in context learning),但人工设计的模版的变化特别敏感,加一个词或者少一个词,或者变动位置都会造成比较大的变化。

问题2:什么是NLU任务?(解决)

答案:自然语言理解,是自然语言处理(NLP)中的一个重要子领域,涉及理解和处理人类语言的语义和语法,以便机器能够从文本中提取有意义的信息。NLU任务通常涉及对文本的深层次理解,包括解析句子结构、理解上下文、推理隐含意义。

问题3:什么是P-tuning?与prefix tuning有什么区别?(解决)

答案:prefix tuning是在每一层中插入可学习的前缀嵌入序列,而不是直接影响输入,在transformer每一层都添加前缀;

p-tuning是直接在输入层中插入可学习的提示词(软提示),优化这些提示词以提高任务性能,仅在输入层进行更改,在其他层没有操作。

问题4:P-tuning v2的原理是怎么样的?(解决)

答案:P-tuning v2不仅仅在输入层添加软提示,还可以在模型的多个中间层或特定层添加这些提示。这种多层次的提示优化使得模型能够更好地捕捉复杂的语义信息。

问题5:prompt-tunin、prefix tuning、p-tuning和p-tuning2有什么区别和联系?(解决)

答案:p-tuning可以看作是prompt-tunin的发展;p-tuning2可以看作是prefix tuning的发展

问题6:文章主要讲了什么内容?文章结构是什么样的?(解决)

答案:文章主要讲了p-tuning和p-tuning是什么,以及原理是什么,和前一篇的对比。结构上也是这样的。

动手题

1:动手实践prompt-tuning、prefix tuning、p-tuning和p-tuning v2(未解决)

相关推荐
Re_Yang0914 小时前
2025年统计与数据分析领域专业认证发展指南
服务器·人工智能·数据分析
西猫雷婶14 小时前
pytorch基本运算-分离计算
人工智能·pytorch·python·深度学习·神经网络·机器学习
数新网络14 小时前
PyTorch
人工智能·pytorch·python
程序员miki14 小时前
RNN循环神经网络(一):基础RNN结构、双向RNN
人工智能·pytorch·rnn·深度学习
自信的小螺丝钉14 小时前
【大模型手撕】pytorch实现LayerNorm, RMSNorm
人工智能·pytorch·python·归一化·rmsnorm·layernorm
深耕AI14 小时前
PyTorch图像预处理:ToTensor()与Normalize()的本质区别
人工智能·pytorch·python
落日沉溺于海14 小时前
React From表单使用Formik和yup进行校验
开发语言·前端·javascript
moonsims14 小时前
SKYTRAC-无人机、无人机系统和城市空中交通卫星通信 – BVLOS 和 C2 卫星通信终端和任务服务器
人工智能
云卓SKYDROID14 小时前
无人机电压模块技术剖析
人工智能·无人机·电压·高科技·云卓科技
Codebee14 小时前
使用Qoder 改造前端UI/UE升级改造实践:从传统界面到现代化体验的华丽蜕变
前端·人工智能