【Python机器学习】利用PCA来简化数据——降维技术

通常情况下,我们会显示三维图像或者只显示其相关特征,但是数据往往拥有超出显示能力的更多特征。数据显示并非大规模特征下的唯一难题,对数据进行简化还有以下的原因:

1、使得数据集更易使用;

2、将死很多算法的计算开销;

3、去除噪声;

4、使得结果易懂。

在已标注和未标注的数据上都有降维技术。这里我们主要关注的是未标注数据上的降维技术,该技术同时也可以应用于已标注的数据。

第一种降维方法称为主成分分析PCA)。在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向;第二个新坐标轴的选择和第一个坐标轴正交且具有最大方差的方向。该过程一直重复,重复次数为原始数据中特征的数目。我们会发现,大部分方差都包含在最前面的几个新坐标轴中。因此,我们可以忽略余下的坐标轴,即对数据进行了降维处理。

另一种降维技术是因子分析 。在因子分析中,我们假设在观察数据的生成中有一些观察不到的隐变量。假设观察数据是这些隐变量和某些噪声的线性组合。那么隐变量的数据可能比观察数据的数目少,也就是说通过找到隐变量就可以实现数据的降维。因子分析已经应用于社会科学、金融及其他领域了。

还有一种降维技术就是独立成分分析(ICA)。ICA假设数据使用N个数据源生成的,这一点和因子分析有些类似。假设数据为多个数据源的混合观察结果,这些数据源之间在统计上是相互独立的,而在PCA中只假设数据是不相关的。同因子分析一样,如果数据源的数目少于观察数据的数目,则可以实现降维过程。

在上述3中降维技术中,PCA的应用目前最为广泛。

相关推荐
enyp806 分钟前
Qt QStackedWidget 总结
开发语言·qt
带娃的IT创业者18 分钟前
《Python实战进阶》专栏 No.3:Django 项目结构解析与入门DEMO
数据库·python·django
gu2019 分钟前
c#编程:学习Linq,重几个简单示例开始
开发语言·学习·c#·linq
lly20240619 分钟前
SQLite 删除表
开发语言
wjs202425 分钟前
HTML 字符实体
开发语言
二十雨辰34 分钟前
[Java基础]网络编程
java·开发语言
AL.千灯学长35 分钟前
DeepSeek接入Siri(已升级支持苹果手表)完整版硅基流动DeepSeek-R1部署
人工智能·gpt·ios·ai·苹果vision pro
MZWeiei37 分钟前
PTA:运用顺序表实现多项式相加
算法
GISer_Jing44 分钟前
Javascript排序算法(冒泡排序、快速排序、选择排序、堆排序、插入排序、希尔排序)详解
javascript·算法·排序算法
cookies_s_s44 分钟前
Linux--进程(进程虚拟地址空间、页表、进程控制、实现简易shell)
linux·运维·服务器·数据结构·c++·算法·哈希算法