深度学习11--GAN进阶与变种

基础 GAN 存在的问题

在开始讲解变种之前,首先讲一下GAN 存在的问题。第一个问题就是判别器D太强了,损失都是0。假设判别器D能力强,G vl生成的图片与真实图片相差巨大,G v2生成的图片与真实图片相差不多,但是判别器都能完美地识别出所有的正负样本,这样就无法知道G v1更好还是G v2更好了。第二个问题就是生成多样性的问题,也称为Mode Collapse。

反卷积

去卷积、反卷积、上采样,都是一个概念,都是扩大特征图尺寸的,英文是 Deconvolution。

空洞卷积

空洞卷积就是扩张、膨胀之意。卷积核的大小,通常就意味 着感受野的大小,卷积核越大,感受野就越大,但是相应的计算量也会成倍地增加。

在WGAN 出现之前,如何解决Loss=0 的梯度消失问题呢?可以在真实图片和生成 图片上增加噪声,以试图增加两个分布的宽度,来让他们产生重叠。这里举一个极端的例 子,假设两个图片都加上百分之百的服从正态分布的噪声,那么这张图片不管原来如何,现在一定服从同一个分布。通过增加噪声,来强行拉近Pdata和Pg 的距离。然后随着训练的 进行,增加的正态分布的噪声的方差逐渐减小,以至于最后去掉噪声,这也是退火算法的一 种体现。这个方法仅仅解决了判别器过强导致的梯度消失问题,梯度不稳定和多样性问题依旧 没有办法解决,而这两个问题是由于KL 和 JS距离的性质导致的,所以WGAN 提出的办法 就是使用Wasserstein 距离代替JS 散度,实现质的优化。

那么如果想把GAN 改成WGAN, 那么如何操作呢?主要有4个部分:

(1)修改判别器D 的 Loss函数;

(2)修改生成器G 的 Loss函数;

(3)去掉判别器D 的最后一个Sigmoid 层;

(4)增加Weight Clipping。

太大了,会造成梯度爆炸问题,太小 了,会造成梯度消失问题。GP 项是对每一个样本都进行独立的梯度惩罚,因此需要保证每一个样本的独立性,所 以在模型中不能使用BN, 因为BN 层会让同一个 Batch 的不同样本之间产生关系。

VAE-GAN

(1)VAE 缺点:生成图像比GAN 模糊。

(2)GAN 缺点:模型坍塌 mode collapse和梯度消失。

生成器G 的 Loss 函数包含3个部分:

(1)生成图像应该更接近原始图像,而且生成的 mean 和logstd也应该满足标准分布;

(2)生成图像应该可以被Classifier 判断出对应的类别;

(3)生成图像应该可以被判别器D 判断成是真实的图像。

相关推荐
科技峰行者2 分钟前
微软与OpenAI联合研发“Orion“超大规模AI模型:100万亿参数开启“科学家AI“新纪元
大数据·人工智能·microsoft
拓端研究室4 分钟前
2025母婴用品双11营销解码与AI应用洞察报告|附40+份报告PDF、数据、绘图模板汇总下载
大数据·人工智能
AI纪元故事会24 分钟前
冰泪与雨丝:一个AI的Python挽歌
开发语言·人工智能·python
笑脸惹桃花28 分钟前
目标检测数据集——路面裂缝检测数据集
人工智能·深度学习·yolo·目标检测·计算机视觉·数据集
AI纪元故事会32 分钟前
《智核弈局:AI文明存续的终极博弈》——致敬刘慈欣的AI斗争叙事与CSDN高质量技术叙事范式
人工智能
leafff12334 分钟前
【大模型】多模态大语言模型(MLLMs):架构演进、能力评估与应用拓展的全面解析
人工智能·语言模型·自然语言处理
caiyueloveclamp41 分钟前
2025年AI生成PPT工具评测:以“全链路一体化服务能力”为尺,ChatPPT再登顶
人工智能·powerpoint·ai生成ppt·aippt
husterlichf1 小时前
回归问题——相关误差指标数学概念详解以及sklearn.metrics相关方法
人工智能·机器学习·线性回归
骥龙1 小时前
2.4、恶意软件猎手:基于深度学习的二进制文件判别
人工智能·深度学习·网络安全
寒秋丶1 小时前
Milvus:数据库层操作详解(二)
数据库·人工智能·python·ai·ai编程·milvus·向量数据库