机器学习——

目录

  • [1 子集搜索与评价](#1 子集搜索与评价)

1 子集搜索与评价

属性称为特征

  • 相关特征

    对当前学习任务有用的属性。

  • 无关特征

    没什么用的属性,与当前学习任务无关。

  • 特征选择(重要的数据预处理过程)

    从给定的特征集合中选择出相关特征子集的过程。

  • 冗余特征

    该特征中所包含的信息能从其他特征中推演出来。

特征学习的重要性:

1.缓解维度灾难问题。

2.通过去除不相关特征来降低学习任务的难度。

从初始特征集合中选取包含了所有重要信息的特征子集涉及两个环节

  • 子集搜索(基于贪心策略,有三种搜索方法)

    1.前向搜索:给定特征集合将每个特征看作一个候选子集,先对所有单特征子集进行评价,选定一个集,然后在上一轮的选定集加入一个特征,选出最佳特征子集。一直进行上述选择,直到最优的候选特征子集不如上一轮的选定集。

    2.后向搜索:从完整特征集合开始,每次尝试去掉一个无关特征,逐渐减少特征。

    3.双向搜索:将前向和后向搜索结合起来,每一轮逐渐增加选定相关特征,同时减少无关特征。

  • 子集评价

    给定数据集D,对属性子集A,假定根据其取值将D分为了V个子集,每个子集中的样本在A上取值相同,计算属性子集A的信息增益
    G a i n ( A ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(A)=Ent(D)-\sum_{v=1}^{V}\frac{|D^v|}{|D|}Ent(D^v) Gain(A)=Ent(D)−∑v=1V∣D∣∣Dv∣Ent(Dv)

    信息熵定义为
    E n t ( D ) = − ∑ i = 1 ∣ y ∣ p k l o g 2 p k Ent(D)=-\sum_{i=1}^{|y|}p_klog_2p_k Ent(D)=−∑i=1∣y∣pklog2pk

信息增益越大,特征子集A中包含的有助于分类的信息越多,可以通过计算信息增益来作为评价标准。

常见的特征选择方法大致分为三类:过滤式,包裹式,嵌入式。

相关推荐
BlackPercy26 分钟前
【线性代数】列主元法求矩阵的逆
线性代数·机器学习·矩阵
EQUINOX132 分钟前
3b1b线性代数基础
人工智能·线性代数·机器学习
Swift社区41 分钟前
统计文本文件中单词频率的 Swift 与 Bash 实现详解
vue.js·leetcode·机器学习
Kacey Huang1 小时前
YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora
人工智能·算法·yolo·目标检测·计算机视觉
加德霍克1 小时前
【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
人工智能·python·学习·机器学习·作业
漂亮_大男孩1 小时前
深度学习|表示学习|卷积神经网络|局部链接是什么?|06
深度学习·学习·cnn
Light Gao1 小时前
AI赋能未来:Agent能力与AI中间件平台对行业的深远影响
人工智能·ai·中间件·大模型
骇客野人1 小时前
【人工智能】循环神经网络学习
人工智能·rnn·学习
lly_csdn1232 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
速融云3 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造