机器学习——

目录

  • [1 子集搜索与评价](#1 子集搜索与评价)

1 子集搜索与评价

属性称为特征

  • 相关特征

    对当前学习任务有用的属性。

  • 无关特征

    没什么用的属性,与当前学习任务无关。

  • 特征选择(重要的数据预处理过程)

    从给定的特征集合中选择出相关特征子集的过程。

  • 冗余特征

    该特征中所包含的信息能从其他特征中推演出来。

特征学习的重要性:

1.缓解维度灾难问题。

2.通过去除不相关特征来降低学习任务的难度。

从初始特征集合中选取包含了所有重要信息的特征子集涉及两个环节

  • 子集搜索(基于贪心策略,有三种搜索方法)

    1.前向搜索:给定特征集合将每个特征看作一个候选子集,先对所有单特征子集进行评价,选定一个集,然后在上一轮的选定集加入一个特征,选出最佳特征子集。一直进行上述选择,直到最优的候选特征子集不如上一轮的选定集。

    2.后向搜索:从完整特征集合开始,每次尝试去掉一个无关特征,逐渐减少特征。

    3.双向搜索:将前向和后向搜索结合起来,每一轮逐渐增加选定相关特征,同时减少无关特征。

  • 子集评价

    给定数据集D,对属性子集A,假定根据其取值将D分为了V个子集,每个子集中的样本在A上取值相同,计算属性子集A的信息增益
    G a i n ( A ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(A)=Ent(D)-\sum_{v=1}^{V}\frac{|D^v|}{|D|}Ent(D^v) Gain(A)=Ent(D)−∑v=1V∣D∣∣Dv∣Ent(Dv)

    信息熵定义为
    E n t ( D ) = − ∑ i = 1 ∣ y ∣ p k l o g 2 p k Ent(D)=-\sum_{i=1}^{|y|}p_klog_2p_k Ent(D)=−∑i=1∣y∣pklog2pk

信息增益越大,特征子集A中包含的有助于分类的信息越多,可以通过计算信息增益来作为评价标准。

常见的特征选择方法大致分为三类:过滤式,包裹式,嵌入式。

相关推荐
java_heartLake1 小时前
基于deepseek的AI知识库系统搭建
人工智能·deepseek
阿里云云原生2 小时前
山石网科×阿里云通义灵码,开启研发“AI智造”新时代
网络·人工智能·阿里云·ai程序员·ai程序员体验官
diemeng11193 小时前
AI前端开发技能变革时代:效率与创新的新范式
前端·人工智能
有Li3 小时前
跨中心模型自适应牙齿分割|文献速递-医学影像人工智能进展
人工智能
万事可爱^6 小时前
HDBSCAN:密度自适应的层次聚类算法解析与实践
算法·机器学习·数据挖掘·聚类·hdbscan
牧歌悠悠7 小时前
【深度学习】Unet的基础介绍
人工智能·深度学习·u-net
坚毅不拔的柠檬柠檬8 小时前
AI革命下的多元生态:DeepSeek、ChatGPT、XAI、文心一言与通义千问的行业渗透与场景重构
人工智能·chatgpt·文心一言
坚毅不拔的柠檬柠檬8 小时前
2025:人工智能重构人类文明的新纪元
人工智能·重构
jixunwulian8 小时前
DeepSeek赋能AI边缘计算网关,开启智能新时代!
人工智能·边缘计算
Archie_IT8 小时前
DeepSeek R1/V3满血版——在线体验与API调用
人工智能·深度学习·ai·自然语言处理