机器学习——

目录

  • [1 子集搜索与评价](#1 子集搜索与评价)

1 子集搜索与评价

属性称为特征

  • 相关特征

    对当前学习任务有用的属性。

  • 无关特征

    没什么用的属性,与当前学习任务无关。

  • 特征选择(重要的数据预处理过程)

    从给定的特征集合中选择出相关特征子集的过程。

  • 冗余特征

    该特征中所包含的信息能从其他特征中推演出来。

特征学习的重要性:

1.缓解维度灾难问题。

2.通过去除不相关特征来降低学习任务的难度。

从初始特征集合中选取包含了所有重要信息的特征子集涉及两个环节

  • 子集搜索(基于贪心策略,有三种搜索方法)

    1.前向搜索:给定特征集合将每个特征看作一个候选子集,先对所有单特征子集进行评价,选定一个集,然后在上一轮的选定集加入一个特征,选出最佳特征子集。一直进行上述选择,直到最优的候选特征子集不如上一轮的选定集。

    2.后向搜索:从完整特征集合开始,每次尝试去掉一个无关特征,逐渐减少特征。

    3.双向搜索:将前向和后向搜索结合起来,每一轮逐渐增加选定相关特征,同时减少无关特征。

  • 子集评价

    给定数据集D,对属性子集A,假定根据其取值将D分为了V个子集,每个子集中的样本在A上取值相同,计算属性子集A的信息增益
    G a i n ( A ) = E n t ( D ) − ∑ v = 1 V ∣ D v ∣ ∣ D ∣ E n t ( D v ) Gain(A)=Ent(D)-\sum_{v=1}^{V}\frac{|D^v|}{|D|}Ent(D^v) Gain(A)=Ent(D)−∑v=1V∣D∣∣Dv∣Ent(Dv)

    信息熵定义为
    E n t ( D ) = − ∑ i = 1 ∣ y ∣ p k l o g 2 p k Ent(D)=-\sum_{i=1}^{|y|}p_klog_2p_k Ent(D)=−∑i=1∣y∣pklog2pk

信息增益越大,特征子集A中包含的有助于分类的信息越多,可以通过计算信息增益来作为评价标准。

常见的特征选择方法大致分为三类:过滤式,包裹式,嵌入式。

相关推荐
m0_571186604 分钟前
第三十四周周报
人工智能
AI资源库4 分钟前
microsoftVibeVoice-ASR模型深入解析
人工智能·语言模型
jarvisuni5 分钟前
开发“360安全卫士”,Opus4.6把GPT5.3吊起来打了?!
人工智能·gpt·ai编程
小陈phd5 分钟前
多模态大模型学习笔记(二)——机器学习十大经典算法:一张表看懂分类 / 回归 / 聚类 / 降维
学习·算法·机器学习
kyle~5 分钟前
深度学习---长短期记忆网络LSTM
人工智能·深度学习·lstm
xrgs_shz5 分钟前
什么是LLM、VLM、MLLM、LMM?它们之间有什么关联?
人工智能·计算机视觉
DatGuy6 分钟前
Week 36: 量子深度学习入门:辛量子神经网络与物理守恒
人工智能·深度学习·神经网络
说私域8 分钟前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
千里马也想飞11 分钟前
汉语言文学《朝花夕拾》叙事艺术研究论文写作实操:AI 辅助快速完成框架 + 正文创作
人工智能
玉梅小洋12 分钟前
解决 VS Code Claude Code 插件「Allow this bash command_」弹窗问题
人工智能·ai·大模型·ai编程