CNN-GRU神经网络多输入单输出回归预测【MATLAB】

1. CNN(卷积神经网络)部分

作用:

特征提取:CNN擅长从输入数据中提取空间特征。在多输入情况下,它可以处理来自不同源的数据,提取有用的特征。

局部感受野:通过卷积操作,CNN能够识别输入数据中的局部特征,从而提取图像、序列或其他类型数据中的重要模式。
组成部分:

卷积层:应用卷积核(滤波器)扫描输入数据,提取特征图。

激活函数:通常使用ReLU等激活函数增加非线性。

池化层:减小特征图的尺寸,保留最重要的特征,降低计算复杂度。

2. GRU(门控循环单元)部分

作用:

时序建模:GRU用于捕捉数据的时序依赖关系。它能够处理时间序列数据中的长期和短期依赖关系,比传统RNN更具优势。

记忆单元:通过门控机制,GRU决定哪些信息保留,哪些信息遗忘,从而学习到更好的时序特征表示。
组成部分:

重置门:控制当前输入和过去状态的混合程度。

更新门:决定如何更新状态信息。

候选状态:生成当前时刻的候选状态,并与更新门结合以更新最终状态。

3. 多输入单输出回归预测

多输入:模型可以接受来自不同来源的多种数据输入,这些数据可以是时间序列、图像数据或其他类型的数据。CNN部分用于处理这些多样的输入数据,提取特征。

单输出:模型的目标是预测一个连续值(回归任务),例如房价预测、温度预测等。最终,CNN提取的特征通过GRU进行时序建模,生成最终的预测输出。

回归预测:将CNN和GRU提取和学习到的特征经过合适的全连接层进行线性变换,得到最终的回归预测结果。通常,这涉及到:

特征融合:将CNN提取的空间特征和GRU提取的时序特征结合。

预测层:通过全连接层(Dense Layer)将融合后的特征映射到回归预测的目标值上。
工作流程

数据预处理:将输入数据整理成适合CNN和GRU处理的格式。

特征提取:通过CNN处理输入数据,提取空间特征。

时序建模:将CNN提取的特征输入到GRU中,建模时序关系。

输出预测:将GRU的输出通过全连接层生成最终的预测值。
应用场景

金融预测:例如股票价格预测,结合历史价格(时序数据)和其他经济指标(空间数据)。

环境监测:如空气质量预测,结合气象数据(时序数据)和地理信息(空间数据)。

智能交通:预测交通流量,结合道路信息(空间特征)和实时交通数据(时序特征)。
优点

特征提取和建模:结合了CNN的空间特征提取能力和GRU的时序建模能力,提高了模型的准确性和鲁棒性。

处理多样数据:适应多输入类型的数据处理需求,具有较强的通用性。

结合CNN和GRU的模型在多个领域都显示出了强大的性能,尤其在需要处理复杂特征和时序数据的回归任务中

代码实现(部分):

c 复制代码
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
%% 导入数据
res = xlsread('data.xlsx');
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = ceil(num_size * num_samples)+1; % 训练集样本个数
L = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: L)';
T_train = res(1: num_train_s, L + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: L)';
T_test = res(num_train_s + 1: end, L + 1: end)';
N = size(P_test, 2);

训练进度:

网络结构:

预测结果:

评价指标:

完整代码和数据集下载https://mbd.pub/o/bread/ZpmZmJlp

相关推荐
Java后端的Ai之路1 小时前
【神经网络基础】-TensorFlow Serving官方的生产级模型部署
神经网络·部署·tensorflow·neo4j·tensorflowserv
deephub3 小时前
从贝叶斯视角解读Transformer的内部几何:mHC的流形约束与大模型训练稳定性
人工智能·深度学习·神经网络·transformer·残差链接
渡我白衣3 小时前
从直觉到公式——线性模型的原理、实现与解释
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理·caffe
deep_drink3 小时前
【论文精读(十八)】SPoTr:拒绝盲目采样,自定位探针(Self-Positioning)如何“以点带面”?(CVPR 2023)
深度学习·神经网络·计算机视觉·3d·point cloud
SmartBrain3 小时前
AI技术进阶之路(系列之一):从函数到深度学习
人工智能·语言模型·架构·cnn
m0_462605223 小时前
G1 - 生成对抗网络(GAN)
人工智能·神经网络·生成对抗网络
2401_841495643 小时前
【机器学习】生成对抗网络(GAN)
人工智能·python·深度学习·神经网络·算法·机器学习·生成对抗网络
周名彥13 小时前
### 天脑体系V∞·13824D完全体终极架构与全域落地研究报告 (生物计算与隐私计算融合版)
人工智能·神经网络·去中心化·量子计算·agi
大学生毕业题目16 小时前
毕业项目推荐:91-基于yolov8/yolov5/yolo11的井盖破损检测识别(Python+卷积神经网络)
python·yolo·目标检测·cnn·pyqt·井盖破损
最晚的py17 小时前
rnn循环神经网络
人工智能·rnn·深度学习·神经网络