CNN-GRU神经网络多输入单输出回归预测【MATLAB】

1. CNN(卷积神经网络)部分

作用:

特征提取:CNN擅长从输入数据中提取空间特征。在多输入情况下,它可以处理来自不同源的数据,提取有用的特征。

局部感受野:通过卷积操作,CNN能够识别输入数据中的局部特征,从而提取图像、序列或其他类型数据中的重要模式。
组成部分:

卷积层:应用卷积核(滤波器)扫描输入数据,提取特征图。

激活函数:通常使用ReLU等激活函数增加非线性。

池化层:减小特征图的尺寸,保留最重要的特征,降低计算复杂度。

2. GRU(门控循环单元)部分

作用:

时序建模:GRU用于捕捉数据的时序依赖关系。它能够处理时间序列数据中的长期和短期依赖关系,比传统RNN更具优势。

记忆单元:通过门控机制,GRU决定哪些信息保留,哪些信息遗忘,从而学习到更好的时序特征表示。
组成部分:

重置门:控制当前输入和过去状态的混合程度。

更新门:决定如何更新状态信息。

候选状态:生成当前时刻的候选状态,并与更新门结合以更新最终状态。

3. 多输入单输出回归预测

多输入:模型可以接受来自不同来源的多种数据输入,这些数据可以是时间序列、图像数据或其他类型的数据。CNN部分用于处理这些多样的输入数据,提取特征。

单输出:模型的目标是预测一个连续值(回归任务),例如房价预测、温度预测等。最终,CNN提取的特征通过GRU进行时序建模,生成最终的预测输出。

回归预测:将CNN和GRU提取和学习到的特征经过合适的全连接层进行线性变换,得到最终的回归预测结果。通常,这涉及到:

特征融合:将CNN提取的空间特征和GRU提取的时序特征结合。

预测层:通过全连接层(Dense Layer)将融合后的特征映射到回归预测的目标值上。
工作流程

数据预处理:将输入数据整理成适合CNN和GRU处理的格式。

特征提取:通过CNN处理输入数据,提取空间特征。

时序建模:将CNN提取的特征输入到GRU中,建模时序关系。

输出预测:将GRU的输出通过全连接层生成最终的预测值。
应用场景

金融预测:例如股票价格预测,结合历史价格(时序数据)和其他经济指标(空间数据)。

环境监测:如空气质量预测,结合气象数据(时序数据)和地理信息(空间数据)。

智能交通:预测交通流量,结合道路信息(空间特征)和实时交通数据(时序特征)。
优点

特征提取和建模:结合了CNN的空间特征提取能力和GRU的时序建模能力,提高了模型的准确性和鲁棒性。

处理多样数据:适应多输入类型的数据处理需求,具有较强的通用性。

结合CNN和GRU的模型在多个领域都显示出了强大的性能,尤其在需要处理复杂特征和时序数据的回归任务中

代码实现(部分):

c 复制代码
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行
tic
%% 导入数据
res = xlsread('data.xlsx');
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
%res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = ceil(num_size * num_samples)+1; % 训练集样本个数
L = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: L)';
T_train = res(1: num_train_s, L + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: L)';
T_test = res(num_train_s + 1: end, L + 1: end)';
N = size(P_test, 2);

训练进度:

网络结构:

预测结果:

评价指标:

完整代码和数据集下载https://mbd.pub/o/bread/ZpmZmJlp

相关推荐
沅_Yuan2 小时前
基于贝叶斯优化的Transformer多输入单输出回归预测模型Bayes-Transformer【MATLAB】
神经网络·matlab·回归·贝叶斯·transformer·回归预测
小宋加油啊9 小时前
深度学习小记(包括pytorch 还有一些神经网络架构)
pytorch·深度学习·神经网络
沛沛老爹9 小时前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh
何大春10 小时前
【视频时刻检索】Text-Video Retrieval via Multi-Modal Hypergraph Networks 论文阅读
论文阅读·深度学习·神经网络·计算机视觉·视觉检测·论文笔记
每天都要写算法(努力版)12 小时前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络
早睡早起吧1 天前
目标检测篇---Fast R-CNN
人工智能·目标检测·计算机视觉·cnn
鸿蒙布道师1 天前
AI硬件遭遇“关税风暴“:中国科技企业如何破局?
人工智能·科技·嵌入式硬件·深度学习·神经网络·opencv·机器人
蹦蹦跳跳真可爱5891 天前
Python----深度学习(基于深度学习Pytroch线性回归和曲线回归)
pytorch·python·深度学习·神经网络·回归·线性回归
早睡早起吧2 天前
目标检测篇---faster R-CNN
人工智能·python·目标检测·计算机视觉·cnn