深度学习(YOLO、DETR) 十折交叉验证

二:交叉验证

在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性能。同时由于验证机和训练集是不参与训练的,导致大量的数据无法应用于学习,所以显而易见的会导致训练的效果下降。

二:K 折交叉验证

将训练集数据划分为 K 部分,利用其中的 K-1 份做为训练,剩余的一份作为测试,最后取平均测试误差做为泛化误差。这样做的好处是,训练集的所有样本都必然会成为训练数据同时页必然有机会成为一次测试集。可以更好的利用训练集数据。

K 越大,平均误差被视为泛化误差这个结果就越可靠,但相应的所花费的时间也是线性增长的。

上图 中 划分测试、训练、验证的时候 平均分成10份 7份训练 1份验证 2份测试 。

按照顺序循环成一个圈 代码如下:

python 复制代码
import os
import shutil
import numpy as np

#文件地址
postfix = 'jpg'
imgpath = 'D:\\dataset\\images'
txtpath = 'D:\\dataset\\txt'


# 创建存储交叉验证结果的基础目录
os.makedirs('cross_validation', exist_ok=True)

# 获取文件列表并按文件名排序
listdir = np.array(sorted([i for i in os.listdir(txtpath) if i.endswith('.txt')], key=lambda x: int(x[:-4])))

# 将文件列表等分为10份
folds = np.array_split(listdir, 10)

# 进行10次交叉验证
for fold in range(10):
    # 初始化训练、验证、测试集索引
    train_indices = []
    val_indices = []
    test_indices = []

    # 训练集索引
    for i in range(7):
        index = (fold + i) % 10
        train_indices.extend(folds[index])

    # 验证集索引
    val_index = (fold + 7) % 10
    val_indices.extend(folds[val_index])

    # 测试集索引
    test_indices.extend(folds[(fold + 8) % 10])
    test_indices.extend(folds[(fold + 9) % 10])

    # 打印每次折的训练集、验证集和测试集的大小
    print(f'Fold {fold + 1}:')
    print(f'  Train set size: {len(train_indices)}')
    print(f'  Validation set size: {len(val_indices)}')
    print(f'  Test set size: {len(test_indices)}')

    # 为当前折创建目录
    fold_dir = f'cross_validation/fold_{fold + 1}'
    os.makedirs(f'{fold_dir}/images/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/test', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/test', exist_ok=True)

    # 将文件复制到当前折的训练、验证和测试目录中
    for i in train_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/train/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/train/{i}')

    for i in val_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/val/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/val/{i}')

    for i in test_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/test/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/test/{i}')

images和txt文件夹下存放文件,没有任何子文件夹

相关推荐
IT古董27 分钟前
【漫话机器学习系列】017.大O算法(Big-O Notation)
人工智能·机器学习
凯哥是个大帅比27 分钟前
人工智能ACA(五)--深度学习基础
人工智能·深度学习
m0_748232921 小时前
DALL-M:基于大语言模型的上下文感知临床数据增强方法 ,补充
人工智能·语言模型·自然语言处理
szxinmai主板定制专家1 小时前
【国产NI替代】基于FPGA的32通道(24bits)高精度终端采集核心板卡
大数据·人工智能·fpga开发
海棠AI实验室1 小时前
AI的进阶之路:从机器学习到深度学习的演变(三)
人工智能·深度学习·机器学习
机器懒得学习1 小时前
基于YOLOv5的智能水域监测系统:从目标检测到自动报告生成
人工智能·yolo·目标检测
QQ同步助手1 小时前
如何正确使用人工智能:开启智慧学习与创新之旅
人工智能·学习·百度
AIGC大时代1 小时前
如何使用ChatGPT辅助文献综述,以及如何进行优化?一篇说清楚
人工智能·深度学习·chatgpt·prompt·aigc
流浪的小新1 小时前
【AI】人工智能、LLM学习资源汇总
人工智能·学习