深度学习(YOLO、DETR) 十折交叉验证

二:交叉验证

在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性能。同时由于验证机和训练集是不参与训练的,导致大量的数据无法应用于学习,所以显而易见的会导致训练的效果下降。

二:K 折交叉验证

将训练集数据划分为 K 部分,利用其中的 K-1 份做为训练,剩余的一份作为测试,最后取平均测试误差做为泛化误差。这样做的好处是,训练集的所有样本都必然会成为训练数据同时页必然有机会成为一次测试集。可以更好的利用训练集数据。

K 越大,平均误差被视为泛化误差这个结果就越可靠,但相应的所花费的时间也是线性增长的。

上图 中 划分测试、训练、验证的时候 平均分成10份 7份训练 1份验证 2份测试 。

按照顺序循环成一个圈 代码如下:

python 复制代码
import os
import shutil
import numpy as np

#文件地址
postfix = 'jpg'
imgpath = 'D:\\dataset\\images'
txtpath = 'D:\\dataset\\txt'


# 创建存储交叉验证结果的基础目录
os.makedirs('cross_validation', exist_ok=True)

# 获取文件列表并按文件名排序
listdir = np.array(sorted([i for i in os.listdir(txtpath) if i.endswith('.txt')], key=lambda x: int(x[:-4])))

# 将文件列表等分为10份
folds = np.array_split(listdir, 10)

# 进行10次交叉验证
for fold in range(10):
    # 初始化训练、验证、测试集索引
    train_indices = []
    val_indices = []
    test_indices = []

    # 训练集索引
    for i in range(7):
        index = (fold + i) % 10
        train_indices.extend(folds[index])

    # 验证集索引
    val_index = (fold + 7) % 10
    val_indices.extend(folds[val_index])

    # 测试集索引
    test_indices.extend(folds[(fold + 8) % 10])
    test_indices.extend(folds[(fold + 9) % 10])

    # 打印每次折的训练集、验证集和测试集的大小
    print(f'Fold {fold + 1}:')
    print(f'  Train set size: {len(train_indices)}')
    print(f'  Validation set size: {len(val_indices)}')
    print(f'  Test set size: {len(test_indices)}')

    # 为当前折创建目录
    fold_dir = f'cross_validation/fold_{fold + 1}'
    os.makedirs(f'{fold_dir}/images/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/test', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/test', exist_ok=True)

    # 将文件复制到当前折的训练、验证和测试目录中
    for i in train_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/train/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/train/{i}')

    for i in val_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/val/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/val/{i}')

    for i in test_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/test/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/test/{i}')

images和txt文件夹下存放文件,没有任何子文件夹

相关推荐
阿里云大数据AI技术8 分钟前
[VLDB 2025]面向Flink集群巡检的交叉对比学习异常检测
大数据·人工智能·flink
a1504631 小时前
人工智能——图像梯度处理、边缘检测、绘制图像轮廓、凸包特征检测
人工智能·深度学习·计算机视觉
荼蘼1 小时前
基于 KNN 算法的手写数字识别项目实践
人工智能·算法·机器学习
wei_shuo1 小时前
亚马逊云科技 EC2 部署 Dify,集成 Amazon Bedrock 构建生成式 AI 应用
人工智能·amazon·amazon bedrock
ppo921 小时前
MCP简单应用:使用SpringAI + Cline + DeepSeek实现AI创建文件并写入内容
人工智能·后端
云卓SKYDROID1 小时前
无人机速度模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
UQI-LIUWJ2 小时前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型
大魔王(已黑化)3 小时前
OpenCV —— 绘制图形
人工智能·opencv·计算机视觉
开开心心_Every3 小时前
多线程语音识别工具
javascript·人工智能·ocr·excel·语音识别·symfony
机器之心3 小时前
扣子开源全家桶,Apache 2.0加持,AI Agent又一次卷到起飞
人工智能