深度学习(YOLO、DETR) 十折交叉验证

二:交叉验证

在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性能。同时由于验证机和训练集是不参与训练的,导致大量的数据无法应用于学习,所以显而易见的会导致训练的效果下降。

二:K 折交叉验证

将训练集数据划分为 K 部分,利用其中的 K-1 份做为训练,剩余的一份作为测试,最后取平均测试误差做为泛化误差。这样做的好处是,训练集的所有样本都必然会成为训练数据同时页必然有机会成为一次测试集。可以更好的利用训练集数据。

K 越大,平均误差被视为泛化误差这个结果就越可靠,但相应的所花费的时间也是线性增长的。

上图 中 划分测试、训练、验证的时候 平均分成10份 7份训练 1份验证 2份测试 。

按照顺序循环成一个圈 代码如下:

python 复制代码
import os
import shutil
import numpy as np

#文件地址
postfix = 'jpg'
imgpath = 'D:\\dataset\\images'
txtpath = 'D:\\dataset\\txt'


# 创建存储交叉验证结果的基础目录
os.makedirs('cross_validation', exist_ok=True)

# 获取文件列表并按文件名排序
listdir = np.array(sorted([i for i in os.listdir(txtpath) if i.endswith('.txt')], key=lambda x: int(x[:-4])))

# 将文件列表等分为10份
folds = np.array_split(listdir, 10)

# 进行10次交叉验证
for fold in range(10):
    # 初始化训练、验证、测试集索引
    train_indices = []
    val_indices = []
    test_indices = []

    # 训练集索引
    for i in range(7):
        index = (fold + i) % 10
        train_indices.extend(folds[index])

    # 验证集索引
    val_index = (fold + 7) % 10
    val_indices.extend(folds[val_index])

    # 测试集索引
    test_indices.extend(folds[(fold + 8) % 10])
    test_indices.extend(folds[(fold + 9) % 10])

    # 打印每次折的训练集、验证集和测试集的大小
    print(f'Fold {fold + 1}:')
    print(f'  Train set size: {len(train_indices)}')
    print(f'  Validation set size: {len(val_indices)}')
    print(f'  Test set size: {len(test_indices)}')

    # 为当前折创建目录
    fold_dir = f'cross_validation/fold_{fold + 1}'
    os.makedirs(f'{fold_dir}/images/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/test', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/test', exist_ok=True)

    # 将文件复制到当前折的训练、验证和测试目录中
    for i in train_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/train/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/train/{i}')

    for i in val_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/val/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/val/{i}')

    for i in test_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/test/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/test/{i}')

images和txt文件夹下存放文件,没有任何子文件夹

相关推荐
Shawn_Shawn4 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like6 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a6 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
音沐mu.7 小时前
【55】玉米病虫害数据集(有v5/v8模型)/YOLO玉米病虫害检测
yolo·目标检测·数据集·玉米病虫害检测·玉米病虫害数据集
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
yLDeveloper8 小时前
从模型评估、梯度难题到科学初始化:一步步解析深度学习的训练问题
深度学习
Coder_Boy_8 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信8 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann