深度学习(YOLO、DETR) 十折交叉验证

二:交叉验证

在 K 折验证之前最常用的验证方法就是交叉验证,即把数据划分为训练集、验证集和测试集。一般的划分比例为 7:1:2。但如何合理的抽取样本就成为了使用交叉验证的难点,不同的抽取方法会导致截然不同的训练性能。同时由于验证机和训练集是不参与训练的,导致大量的数据无法应用于学习,所以显而易见的会导致训练的效果下降。

二:K 折交叉验证

将训练集数据划分为 K 部分,利用其中的 K-1 份做为训练,剩余的一份作为测试,最后取平均测试误差做为泛化误差。这样做的好处是,训练集的所有样本都必然会成为训练数据同时页必然有机会成为一次测试集。可以更好的利用训练集数据。

K 越大,平均误差被视为泛化误差这个结果就越可靠,但相应的所花费的时间也是线性增长的。

上图 中 划分测试、训练、验证的时候 平均分成10份 7份训练 1份验证 2份测试 。

按照顺序循环成一个圈 代码如下:

python 复制代码
import os
import shutil
import numpy as np

#文件地址
postfix = 'jpg'
imgpath = 'D:\\dataset\\images'
txtpath = 'D:\\dataset\\txt'


# 创建存储交叉验证结果的基础目录
os.makedirs('cross_validation', exist_ok=True)

# 获取文件列表并按文件名排序
listdir = np.array(sorted([i for i in os.listdir(txtpath) if i.endswith('.txt')], key=lambda x: int(x[:-4])))

# 将文件列表等分为10份
folds = np.array_split(listdir, 10)

# 进行10次交叉验证
for fold in range(10):
    # 初始化训练、验证、测试集索引
    train_indices = []
    val_indices = []
    test_indices = []

    # 训练集索引
    for i in range(7):
        index = (fold + i) % 10
        train_indices.extend(folds[index])

    # 验证集索引
    val_index = (fold + 7) % 10
    val_indices.extend(folds[val_index])

    # 测试集索引
    test_indices.extend(folds[(fold + 8) % 10])
    test_indices.extend(folds[(fold + 9) % 10])

    # 打印每次折的训练集、验证集和测试集的大小
    print(f'Fold {fold + 1}:')
    print(f'  Train set size: {len(train_indices)}')
    print(f'  Validation set size: {len(val_indices)}')
    print(f'  Test set size: {len(test_indices)}')

    # 为当前折创建目录
    fold_dir = f'cross_validation/fold_{fold + 1}'
    os.makedirs(f'{fold_dir}/images/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/images/test', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/train', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/val', exist_ok=True)
    os.makedirs(f'{fold_dir}/labels/test', exist_ok=True)

    # 将文件复制到当前折的训练、验证和测试目录中
    for i in train_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/train/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/train/{i}')

    for i in val_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/val/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/val/{i}')

    for i in test_indices:
        img_file = f'{imgpath}/{i[:-4]}.jpg'
        lbl_file = f'{txtpath}/{i}'
        shutil.copy(img_file, f'{fold_dir}/images/test/{i[:-4]}.jpg')
        shutil.copy(lbl_file, f'{fold_dir}/labels/test/{i}')

images和txt文件夹下存放文件,没有任何子文件夹

相关推荐
sendnews4 分钟前
AI赋能教育,小猿搜题系列产品携手DeepSeek打造个性化学习新体验
人工智能
紫雾凌寒15 分钟前
解锁机器学习核心算法|神经网络:AI 领域的 “超级引擎”
人工智能·python·神经网络·算法·机器学习·卷积神经网络
WBingJ26 分钟前
2月17日深度学习日记
人工智能
zhengyawen66627 分钟前
深度学习之图像分类(一)
人工智能·深度学习·分类
莫莫莫i31 分钟前
拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!
人工智能·微软·量子计算
C#Thread34 分钟前
机器视觉--图像的运算(加法)
图像处理·人工智能·计算机视觉
无极工作室(网络安全)1 小时前
机器学习小项目之鸢尾花分类
人工智能·机器学习·分类
涛涛讲AI1 小时前
文心一言大模型的“三级跳”:从收费到免费再到开源,一场AI生态的重构实验
人工智能·百度·大模型·deepseek
视觉人机器视觉1 小时前
机器视觉中的3D高反光工件检测
人工智能·3d·c#·视觉检测
伊一线天2 小时前
体验用ai做了个python小游戏
人工智能·python·pygame