DETR论文,基于transformer的目标检测网络 DETR:End-to-End Object Detection with Transformers

transformer的基本结构:

  • encoder-decoder的基本流程为:

1)对于输入,首先进行embedding操作,即将输入映射为向量的形式,包含两部分操作,第一部分是input embedding:例如,在NLP领域,称为token embedding,即将输入序列中的token(如单词或字符)映射为连续的向量表示;在CV领域,可以是将每个像素或者每个patch块映射为向量形式,例如,patch embedding层

2)另一个embedding操作为positional encoding:即位置编码,即一组与输入经过embedding操作后的向量相同维度的向量(例如都为[N, HW, C]),用于提供位置信息。位置编码与input embedding相加得到transformer 编码器的输入。

3)transformer encoder:是由多个编码模块组成的编码器层,每个编码模块由多头自注意力机制+残差add+层归一化LayerNorm+前馈网络FFN+残差add+层归一化LayerNorm组成

多头自注意力机制:核心部分,例如,在CV领域,经过embedding层后的输入为[N, HW, C],N为Batch num,HW为像素个数,每个像素映射为一个维度为C的向量;然后通过QKV的自注意力机制和划分为多头的方式,得到输出为[N, HW, C]:

要除以​的原因:查询(Query)与键(Key)之间的点积,然后将这个点积除以一个缩放因子,最后应用softmax函数来获得注意力权重。如果不进行缩放,当键的维度dk很大时,点积的结果可能会非常大,这会导致softmax函数的梯度非常小,从而引起梯度消失问题。通过除以根号dk,提高训练的稳定性。

add+LayerNorm:经过多头自注意力机制后再与输入相加,并经过层归一化LayerNorm,即在最后一个维度C上做归一化,详见https://blog.csdn.net/m0_48086806/article/details/132153059

前馈网络FFN:是由两个全连接层+ReLu激活函数组成

4)transformer decoder:是由多个解码模块组成的解码器层,每个解码模块由Masked多头自注意力机制+残差add&层归一化LayerNorm+多头cross attention机制+add&LayerNorm+前馈网络FFN+add&LayerNorm。

5)此外需要注意的是,第一个解码模块的输入为output(可以初始化为0或者随机初始化)经过embedding操作后的结果,之后各个解码模块的输入就变为前一个解码模块的输出了;第二个cross attention机制的QKV输入分别为:KV键值对都是等于编码器最终的输出;Query为Masked多头自注意力的输出

Masked多头自注意力机制:一个通俗解释为:一个词序列中,每个词只能被它前面的词所影响,所以这个词后面的所有位置都需要被忽略,所以在计算Attention的时候,该词向量和它后面的词向量的相关性为0。因此为Mask

6)最后通过Linear层+Softmax得到最终的输出

相关推荐
努力毕业的小土博^_^37 分钟前
【AI课程领学】基于SmolVLM2与Qwen3的多模态模型拼接实践:从零构建视觉语言模型(一)
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理
JOYCE_Leo1643 分钟前
Learning Diffusion Texture Priors for Image Restoration(DTPM)-CVPR2024
深度学习·扩散模型·图像复原
Dev7z1 小时前
基于神经网络的风电机组齿轮箱故障诊断研究与设计
人工智能·深度学习·神经网络
少林and叔叔1 小时前
基于yolov11s模型训练与推理测试(VScode开发环境)
ide·人工智能·vscode·yolo·目标检测
算法熔炉1 小时前
深度学习面试八股文(1)——训练
人工智能·深度学习·面试
算法熔炉1 小时前
深度学习面试八股文(2)——训练
人工智能·深度学习·算法
MM_MS1 小时前
VisionPro工具使用--->通过连接器距离及其角度的测量并显示案例掌握并学习到工具的知识点和使用步骤
学习·目标检测·计算机视觉·视觉检测
极智视界2 小时前
目标检测数据集 - 自动驾驶平台Carla图像交通元素目标检测数据集下载
yolo·目标检测·自动驾驶·数据集·voc·coco·carla
weixin_423196172 小时前
# Python 深度学习 初始化(超参数、权重、函数输入列表)避坑指南:None 占位、可变共享与工厂函数
人工智能·深度学习
杀生丸学AI11 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型