DETR论文,基于transformer的目标检测网络 DETR:End-to-End Object Detection with Transformers

transformer的基本结构:

  • encoder-decoder的基本流程为:

1)对于输入,首先进行embedding操作,即将输入映射为向量的形式,包含两部分操作,第一部分是input embedding:例如,在NLP领域,称为token embedding,即将输入序列中的token(如单词或字符)映射为连续的向量表示;在CV领域,可以是将每个像素或者每个patch块映射为向量形式,例如,patch embedding层

2)另一个embedding操作为positional encoding:即位置编码,即一组与输入经过embedding操作后的向量相同维度的向量(例如都为[N, HW, C]),用于提供位置信息。位置编码与input embedding相加得到transformer 编码器的输入。

3)transformer encoder:是由多个编码模块组成的编码器层,每个编码模块由多头自注意力机制+残差add+层归一化LayerNorm+前馈网络FFN+残差add+层归一化LayerNorm组成

多头自注意力机制:核心部分,例如,在CV领域,经过embedding层后的输入为[N, HW, C],N为Batch num,HW为像素个数,每个像素映射为一个维度为C的向量;然后通过QKV的自注意力机制和划分为多头的方式,得到输出为[N, HW, C]:

要除以​的原因:查询(Query)与键(Key)之间的点积,然后将这个点积除以一个缩放因子,最后应用softmax函数来获得注意力权重。如果不进行缩放,当键的维度dk很大时,点积的结果可能会非常大,这会导致softmax函数的梯度非常小,从而引起梯度消失问题。通过除以根号dk,提高训练的稳定性。

add+LayerNorm:经过多头自注意力机制后再与输入相加,并经过层归一化LayerNorm,即在最后一个维度C上做归一化,详见https://blog.csdn.net/m0_48086806/article/details/132153059

前馈网络FFN:是由两个全连接层+ReLu激活函数组成

4)transformer decoder:是由多个解码模块组成的解码器层,每个解码模块由Masked多头自注意力机制+残差add&层归一化LayerNorm+多头cross attention机制+add&LayerNorm+前馈网络FFN+add&LayerNorm。

5)此外需要注意的是,第一个解码模块的输入为output(可以初始化为0或者随机初始化)经过embedding操作后的结果,之后各个解码模块的输入就变为前一个解码模块的输出了;第二个cross attention机制的QKV输入分别为:KV键值对都是等于编码器最终的输出;Query为Masked多头自注意力的输出

Masked多头自注意力机制:一个通俗解释为:一个词序列中,每个词只能被它前面的词所影响,所以这个词后面的所有位置都需要被忽略,所以在计算Attention的时候,该词向量和它后面的词向量的相关性为0。因此为Mask

6)最后通过Linear层+Softmax得到最终的输出

相关推荐
糖葫芦君2 小时前
基于树结构突破大模型自身能力
人工智能·深度学习·大模型
化作星辰3 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法2
pytorch·深度学习·学习
xiaolin03333 小时前
TransReid
目标检测·reid·行人重识别
小白狮ww3 小时前
VASP 教程:使用 VASP 进行机器学习力场训练
人工智能·深度学习·机器学习·大模型·分子动力学·计算机程序·vasp
智驱力人工智能5 小时前
智能安全管理 基于视觉分析的玩手机检测系统 手机行为AI模型训练 边缘计算手机行为监测设备
人工智能·安全·目标检测·计算机视觉·智能手机·视觉检测·边缘计算
摘星观月5 小时前
【深度学习5】多层感知机
人工智能·深度学习
Blossom.1186 小时前
把AI“贴”进路灯柱:1KB决策树让老旧路灯自己报「灯头松动」
java·人工智能·python·深度学习·算法·决策树·机器学习
qzhqbb6 小时前
神经网络—— 人工神经网络导论
人工智能·深度学习·神经网络
极客BIM工作室6 小时前
ControlNet:Adding Conditional Control to Text-to-Image Diffusion Models
人工智能·深度学习·机器学习
现在,此刻7 小时前
李沐深度学习笔记D1-什么是深度学习
人工智能·笔记·深度学习