论文阅读笔记:The Graph Neural Network Model

论文来源

IEEE Transactions on Neural Networks,Volume: 20 Issue: 1

背景

  1. 图神经网络模型本身具有广泛的使用背景,由于我个人研究交通流量预测的需要,此处仅考虑深度学习领域。
  2. 图结构指的是由节点node和若干个连接的边edge组成的一种数据结构。

图的一些应用

介绍

在机器学习中,我们首先假定存在一个映射,将图和其中一个节点映射为一个向量,在图中心类应用中,该映射只依赖于图本身,在节点中心类应用中,该映射依赖于节点。

在本篇论文中建立一个神经网络模型,能够使之同时适应于图中心的应用和节点中心的应用。将两种模型联合为一个模型------即图神经网络。

图神经网络的模型

|-----------------------------------------------------------------|-------------------|
| N | 节点集合 |
| E | 边集合 |
| | 节点n的信息 |
| | 节点n1与节点n2所连接的边的信息 |
| | 节点n所有相邻节点 |
| | 单射函数 |
| | 节点n所有相邻的边 |
| | 图、节点对 |

模型

使用式(1)进行模型的更新,其中x表示隐藏状态,o表示进行的输出。

我们根据式中参数来看,对于一个节点n,使用其本身信息,其相邻边的信息,相连节点的状态,相连节点的信息作为参数,通过f映射,得到隐藏状态。再以隐藏状态和该节点的信息为参数,通过g映射,得到输出的值。

计算

那么对于一个如图所示的图结构,可以使用这样的方式进行计算。如果你了解深度学习的话,w经常在其中表示权重,这里我们对于f和g均使用前馈神经网络(FNN)完成其映射功能:

具体实施

在具体的实现过程中,存在一个时间序列T。对于不同的时间步t,则有以下的计算方法和对应的示意图。这时,整个编码过程转化为一个循环神经网络。

学习算法

这一部分内容即深度学习中基本的前向计算和后向计算优化神经网络权重的过程,不再进行叙述。

实验结果

(懒得看,总之肯定是更好就对了)

总结

随着机器学习、深度学习的发展,语音、图像、自然语言处理逐渐取得了很大的突破,然而语音、图像、文本都是很简单的序列或者网格数据,是很结构化的数据,深度学习很善于处理该种类型的数据。然而现实生活中有许多事务并不能被简单地表示成序列或网格数据。如社交网络,交通网络,生物/化学分子结构等。因为要对这种可被表示为图结构的信息进行学习建模,本论文提出的图神经网络模型很好地解决了这一问题,并且在子图匹配、化合物分子分类、网页排名等领域得到了更好的实验结果。

相关推荐
carpell8 分钟前
【语义分割专栏】3:Segnet实战篇(附上完整可运行的代码pytorch)
人工智能·python·深度学习·计算机视觉·语义分割
普宁彭于晏29 分钟前
元素水平垂直居中的方法
前端·css·笔记·css3
mengyoufengyu31 分钟前
DeepSeek11-Ollama + Open WebUI 搭建本地 RAG 知识库全流程指南
人工智能·深度学习·deepseek
m0_637146931 小时前
计算机网络基础总结:TCP/IP 模型、TCP vs UDP、DNS 查询过程
笔记·tcp/ip·计算机网络
vlln1 小时前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
Lester_11011 小时前
嵌入式学习笔记 - freeRTOS vTaskPlaceOnEventList()函数解析
笔记·学习
GiantGo2 小时前
信息最大化(Information Maximization)
深度学习·无监督学习·信息最大化
moxiaoran57533 小时前
uni-app学习笔记二十三--交互反馈showToast用法
笔记·学习·uni-app
Blossom.1189 小时前
使用Python和Scikit-Learn实现机器学习模型调优
开发语言·人工智能·python·深度学习·目标检测·机器学习·scikit-learn
scdifsn10 小时前
动手学深度学习12.7. 参数服务器-笔记&练习(PyTorch)
pytorch·笔记·深度学习·分布式计算·数据并行·参数服务器