【YOLO】常用脚本

目录

VOC转YOLO

python 复制代码
import os
import xml.etree.ElementTree as ET


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(xml_file, output_dir, labels):
    # 加载XML文件
    tree = ET.parse(xml_file)
    root = tree.getroot()

    # 获取图像尺寸
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    # 初始化YOLO格式的标注字符串
    result_str = ""

    # 遍历所有对象
    for obj in root.iter('object'):
        difficult = obj.find('difficult')
        if difficult is not None:
            difficult = difficult.text
            if int(difficult) == 1:
                continue
        cls = obj.find('name').text
        if cls not in labels:
            continue
        cls_id = labels.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        result_str = result_str + " " + " ".join([str(a) for a in bb]) + " " + str(cls_id)

        # 写入YOLO格式的标注文件
    file_name = os.path.splitext(os.path.basename(xml_file))[0]
    with open(os.path.join(output_dir, file_name + ".txt"), "w") as f:
        f.write(result_str.strip())


def main(voc_dir, output_dir, labels):
    # 遍历Annotations文件夹
    annotations_dir = os.path.join(voc_dir, "Annotations")
    for xml_file in os.listdir(annotations_dir):
        if xml_file.endswith(".xml"):
            xml_path = os.path.join(annotations_dir, xml_file)
            convert_annotation(xml_path, output_dir, labels)


if __name__ == "__main__":
	# VOC数据集根目录包含Annotations、JPEGImages等
    voc_dir = "path_to_your_voc_dataset"  
    # 存放转换后的YOLO格式标注文件
    output_dir = "path_to_your_yolo_annotations"
    # 数据集包含类别  
    labels = ['nodule']
    main(voc_dir, output_dir, labels)

划分训练集、测试集与验证集

python 复制代码
import os
import random
from shutil import copyfile


def split_dataset(image_folder, txt_folder, output_folder, split_ratio=(0.8, 0.1, 0.1)):
    # Ensure output folders exist
    for dataset in ['train', 'val', 'test']:
        if not os.path.exists(os.path.join(output_folder, dataset, 'images')):
            os.makedirs(os.path.join(output_folder, dataset, 'images'))
        if not os.path.exists(os.path.join(output_folder, dataset, 'labels')):
            os.makedirs(os.path.join(output_folder, dataset, 'labels'))

    # Get list of image files
    image_files = [f for f in os.listdir(image_folder) if f.endswith(('.jpg', '.jpeg', '.png'))]
    random.shuffle(image_files)

    num_images = len(image_files)
    num_train = int(split_ratio[0] * num_images)
    num_val = int(split_ratio[1] * num_images)

    train_images = image_files[:num_train]
    val_images = image_files[num_train:num_train + num_val]
    test_images = image_files[num_train + num_val:]

    # Copy images to respective folders
    for dataset, images_list in zip(['train', 'val', 'test'], [train_images, val_images, test_images]):
        for image_file in images_list:
            image_path = os.path.join(image_folder, image_file)
            copyfile(image_path, os.path.join(output_folder, dataset, 'images', image_file))
            txt_file = os.path.splitext(image_file)[0] + '.txt'
            txt_path = os.path.join(txt_folder, txt_file)

            # Copy corresponding txt file if exists
            if os.path.exists(txt_path):
                copyfile(txt_path, os.path.join(output_folder, dataset, 'labels', txt_file))


if __name__ == "__main__":
	# 图片路径
    image_folder_path = "./JPEGImages"
    # 标签路径
    txt_folder_path = "./Labels"
    # 划分后数据集路径
    output_dataset_path = "./dataset"

    split_dataset(image_folder_path, txt_folder_path, output_dataset_path)
相关推荐
码农阿树5 分钟前
视频解析转换耗时—OpenCV优化摸索路
人工智能·opencv·音视频
伏小白白白1 小时前
【论文精度-2】求解车辆路径问题的神经组合优化算法:综合展望(Yubin Xiao,2025)
人工智能·算法·机器学习
应用市场1 小时前
OpenCV编程入门:从零开始的计算机视觉之旅
人工智能·opencv·计算机视觉
星域智链2 小时前
宠物智能用品:当毛孩子遇上 AI,是便利还是过度?
人工智能·科技·学习·宠物
taxunjishu2 小时前
DeviceNet 转 MODBUS TCP罗克韦尔 ControlLogix PLC 与上位机在汽车零部件涂装生产线漆膜厚度精准控制的通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
说私域2 小时前
基于多模态AI技术的传统行业智能化升级路径研究——以开源AI大模型、AI智能名片与S2B2C商城小程序为例
人工智能·小程序·开源
囚生CY2 小时前
【速写】优化的深度与广度(Adam & Moun)
人工智能·python·算法
hqyjzsb2 小时前
2025年市场岗位能力重构与跨领域转型路径分析
c语言·人工智能·信息可视化·重构·媒体·改行学it·caie
爱学习的uu2 小时前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程
叶凡要飞3 小时前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统