【YOLO】常用脚本

目录

VOC转YOLO

python 复制代码
import os
import xml.etree.ElementTree as ET


def convert(size, box):
    dw = 1. / size[0]
    dh = 1. / size[1]
    x = (box[0] + box[1]) / 2.0
    y = (box[2] + box[3]) / 2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x * dw
    w = w * dw
    y = y * dh
    h = h * dh
    return (x, y, w, h)


def convert_annotation(xml_file, output_dir, labels):
    # 加载XML文件
    tree = ET.parse(xml_file)
    root = tree.getroot()

    # 获取图像尺寸
    size = root.find('size')
    w = int(size.find('width').text)
    h = int(size.find('height').text)

    # 初始化YOLO格式的标注字符串
    result_str = ""

    # 遍历所有对象
    for obj in root.iter('object'):
        difficult = obj.find('difficult')
        if difficult is not None:
            difficult = difficult.text
            if int(difficult) == 1:
                continue
        cls = obj.find('name').text
        if cls not in labels:
            continue
        cls_id = labels.index(cls)
        xmlbox = obj.find('bndbox')
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
             float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w, h), b)
        result_str = result_str + " " + " ".join([str(a) for a in bb]) + " " + str(cls_id)

        # 写入YOLO格式的标注文件
    file_name = os.path.splitext(os.path.basename(xml_file))[0]
    with open(os.path.join(output_dir, file_name + ".txt"), "w") as f:
        f.write(result_str.strip())


def main(voc_dir, output_dir, labels):
    # 遍历Annotations文件夹
    annotations_dir = os.path.join(voc_dir, "Annotations")
    for xml_file in os.listdir(annotations_dir):
        if xml_file.endswith(".xml"):
            xml_path = os.path.join(annotations_dir, xml_file)
            convert_annotation(xml_path, output_dir, labels)


if __name__ == "__main__":
	# VOC数据集根目录包含Annotations、JPEGImages等
    voc_dir = "path_to_your_voc_dataset"  
    # 存放转换后的YOLO格式标注文件
    output_dir = "path_to_your_yolo_annotations"
    # 数据集包含类别  
    labels = ['nodule']
    main(voc_dir, output_dir, labels)

划分训练集、测试集与验证集

python 复制代码
import os
import random
from shutil import copyfile


def split_dataset(image_folder, txt_folder, output_folder, split_ratio=(0.8, 0.1, 0.1)):
    # Ensure output folders exist
    for dataset in ['train', 'val', 'test']:
        if not os.path.exists(os.path.join(output_folder, dataset, 'images')):
            os.makedirs(os.path.join(output_folder, dataset, 'images'))
        if not os.path.exists(os.path.join(output_folder, dataset, 'labels')):
            os.makedirs(os.path.join(output_folder, dataset, 'labels'))

    # Get list of image files
    image_files = [f for f in os.listdir(image_folder) if f.endswith(('.jpg', '.jpeg', '.png'))]
    random.shuffle(image_files)

    num_images = len(image_files)
    num_train = int(split_ratio[0] * num_images)
    num_val = int(split_ratio[1] * num_images)

    train_images = image_files[:num_train]
    val_images = image_files[num_train:num_train + num_val]
    test_images = image_files[num_train + num_val:]

    # Copy images to respective folders
    for dataset, images_list in zip(['train', 'val', 'test'], [train_images, val_images, test_images]):
        for image_file in images_list:
            image_path = os.path.join(image_folder, image_file)
            copyfile(image_path, os.path.join(output_folder, dataset, 'images', image_file))
            txt_file = os.path.splitext(image_file)[0] + '.txt'
            txt_path = os.path.join(txt_folder, txt_file)

            # Copy corresponding txt file if exists
            if os.path.exists(txt_path):
                copyfile(txt_path, os.path.join(output_folder, dataset, 'labels', txt_file))


if __name__ == "__main__":
	# 图片路径
    image_folder_path = "./JPEGImages"
    # 标签路径
    txt_folder_path = "./Labels"
    # 划分后数据集路径
    output_dataset_path = "./dataset"

    split_dataset(image_folder_path, txt_folder_path, output_dataset_path)
相关推荐
我会冲击波3 分钟前
UI UX Pro Max:给 AI 请个设计师
人工智能·程序员
MaxStormBot3 分钟前
WPS Office Skill v1.3.0 发布:全格式图文混排 + Markdown 三件套转换
人工智能
Asher阿舍技术站10 分钟前
【AI基础学习系列】五、AIGC从创意到创造
人工智能·学习·aigc·进阶
ZhengEnCi11 分钟前
05. 文本分块策略设计
人工智能
前端不太难11 分钟前
AI 如何改变传统 鸿蒙App 的信息架构
人工智能·架构·harmonyos
汽车软件工程师00111 分钟前
ChatGpt指导嵌入式软件开发能力——2、TriCore深度专项训练
人工智能·chatgpt·autosar
咚咚王者12 分钟前
人工智能之视觉领域 计算机视觉 第八章 图像边缘检测
人工智能·opencv·计算机视觉
minhuan13 分钟前
大模型应用:规则引擎 + 混元大模型:确定性骨架与智慧大脑的新融合实践.89
人工智能·大模型应用·规则引擎说明·rule-engine应用
数字生命卡兹克13 分钟前
2026马年春晚15个关于AI的看点 - 有一种人类之外的美。
人工智能
Fairy要carry19 分钟前
面试-SPO
人工智能