Positional Encoding | 位置编码【详解】

文章目录

1、位置编码的2种方案

transformer的作者刚开始说固定的位置编码和可学习的位置编码的效果是差不多的,后来证明可学习的位置编码没有太大的必要,还不如省事直接使用固定的位置编码,

代码中,token_num是句子中的单词数量,embed_dim表示每个单词的特征向量长度,

python 复制代码
self.pe =nn.Parameter(torch.zeros(token_num, embed_dim))

2、位置编码

将对应位置的位置编码直接加在输入的单词上,如下图中的最后一行,

为什么 attention 并不能赋予 token 位置信息?

  • 例如下图中的一句话里有5个token,先计算每个token(例如"我")和其他所有token的相似度,然后再乘以每个token(例如"我")的value,得到b1值,b1值只包含全局的内容信息,而不包括位置信息,
  • 下图第1行的左图和右图中的"我"的值都是相同的,
  • 所以相应的解决方案就是对每个token加入一个位置信息,如下图第2行中的pe,这样下图第2行中的b1和b3值就不一样了,

3、公式详解 : 绝对位置 、 相对位置

如下图,设置token的数量为10,token的特征向量长度为128,偶数项和奇数项的位置编码公式如下图所示,

下面详细解释一下位置编码公式,下图中也解释了下面这句话:The wavelengths form a geometric progression from 2 π 2\pi 2π to 10000 ⋅ 2 π 10000 \cdot 2\pi 10000⋅2π,

下面解释一下下面这段话:We chose this function because we hypothesized it would allow the model to easily learn to attend byrelative positions, since for any fixed offset k k k, P E p o s + k PE_{pos+k} PEpos+k can be represented as a linear function of P E p o s PE_{pos} PEpos

4、代码

4.1 代码1

python 复制代码
import torch
import math
import matplotlib.pyplot as plt


def positional_encoding(d_model, length):
    """
    :param d_model: dimension of the token
    :param length: (maximum) token number
    :return: length*d_model position matrix
    """
    if d_model % 2 != 0:
        raise ValueError("Cannot use sin/cos positional encoding with "
                         "odd dim (got dim={:d})".format(d_model))
    pe = torch.zeros(length, d_model)
    position = torch.arange(0, length).unsqueeze(1)
    div_term = torch.exp((torch.arange(0, d_model, 2, dtype=torch.float) *
                         -(math.log(10000.0) / d_model)))
    pe[:, 0::2] = torch.sin(position.float() * div_term)
    pe[:, 1::2] = torch.cos(position.float() * div_term)

    return pe


pe = positional_encoding(128, 10)
plt.plot(range(10), pe[:, 0])
plt.show()

输出:

4.2 代码2

python 复制代码
import torch
import torch.nn as nn
import numpy as np


class PositionalEncoding(nn.Module):

    def __init__(self, d_hid, n_position=200):
        super(PositionalEncoding, self).__init__()

        self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid))

    def _get_sinusoid_encoding_table(self, n_position, d_hid):
        def get_position_angle_vec(position):
            return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

        sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
        sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
        sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

        return torch.FloatTensor(sinusoid_table).unsqueeze(0)

    def forward(self, x):
        return x + self.pos_table[:, :x.size(1)].clone().detach()
相关推荐
m0_6786933326 分钟前
深度学习笔记26-天气预测(Tensorflow)
笔记·深度学习·tensorflow
硅谷秋水33 分钟前
NORA:一个用于具身任务的小型开源通才视觉-语言-动作模型
人工智能·深度学习·机器学习·计算机视觉·语言模型·机器人
xiaohanbao091 小时前
day54 python对抗生成网络
网络·python·深度学习·学习
墨风如雪1 小时前
告别低效!Claude Code:你的代码库来了个“全能管家”
aigc
一只爱撸猫的程序猿1 小时前
创建一个基于Spring AI的智能旅行简单案例
spring boot·程序员·aigc
scdifsn2 小时前
动手学深度学习13.3. 目标检测和边界框-笔记&练习(PyTorch)
笔记·深度学习·目标检测·目标识别·标注边界框
好喜欢吃红柚子2 小时前
【报错解决】RTX4090 nvrtc: error: invalid value for --gpu-architecture (-arch)
人工智能·python·深度学习·计算机视觉·visual studio
HyperAI超神经6 小时前
在线教程丨刷新TTS模型SOTA,OpenAudio S1基于200万小时音频数据训练,深刻理解情感及语音细节
人工智能·深度学习·机器学习·文本转语音·语音处理·语音生成·在线教程
成都犀牛6 小时前
LlamaIndex 学习笔记
人工智能·python·深度学习·神经网络·学习
猛犸MAMMOTH7 小时前
Python打卡第53天
开发语言·python·深度学习