跟李沐学AI:目标检测、锚框

边缘框

用于表示物体的位置,一个边缘框通过四个数字定义:(坐上x, 左上y, 右下x, 右下y)或(左上x, 左上y, 宽, 高)

通常物体检测或目标检测的数据集比图片分类的数据集小很多,因为物体检测数据集标注成本高很多。

目标检测数据集

目标检测数据集一般每行表示一个物体,每行分别有图片文件名、物体类别、边缘框。

COCO是目标检测中常用的数据集:COCO - Common Objects in Context。该数据集包含80类物体、330K张图片以及1.5M个物体

目标检测总结

物体检测或目标检测之别图片中多个物体的类别和位置。

位置常用边缘框表示。

锚框

boudingbox是目标在图像中的真实位置,锚框是算法对目标位置的猜测。

一类目标检测算法是基于锚框。算法首先提出多个锚框,随后算法预测每个锚框内是否含有我们需要检测的物体,如果含有,预测这个锚框到真实边缘框的偏移。

IoU-交并比

IoU用来计算两个框之间的相似度。

交并比为0表示两个框之间无重叠,1则表示完全重合。 公式表示如下:

赋予锚框标号

**每个锚框是一个训练样本。**每个锚框要么标注为背景,要么关联上一个真实边缘框。算法会生成大量的锚框,但真实的边缘框很少,绝大数的锚框都是背景,故导致大量的负样本。

一个例子

假设该矩阵为一个图像,该图像有四个边缘框和九个锚框。每个锚框计算IoU值。跳出最大的IoU值,本例中假设为,则将边缘框3赋值给锚框2作为锚框2的标号。随后将所对应的行、列删除。

同理,选出次最大值,样例中为将边缘框1赋值给锚框7,随后删除对应行、列。重复直至所有边缘框都被赋值。

其中,锚框的x\y\w\h是相对于featuremap或者原图的一个比例,大小为(0,1]。所以从featuremap中确定的锚框可以按比例缩放回原图中。

使用非极大值抑制(NMS)输出

每个锚框预测一个边缘框。每个预测的精度可能不同。NMS可以合并相似的预测:首先选中非背景类的最大预测值,去掉所有其它与他IoU值大于的预测值,即去掉与它高度重合的锚框。重负上述过程直至所有预测被选中或去除。

锚框总结

一类目标检测算法基于锚框进行预测。

首先生成大量锚框并赋予标号,每个锚框作为一个样本进行训练。

在预测时,使用NMS去除冗余的预测。

相关推荐
北京青翼科技5 分钟前
PCIe接口-高速模拟采集—高性能计算卡-青翼科技高品质军工级数据采集板-打造专业工业核心板
图像处理·人工智能·fpga开发·信号处理·智能硬件
软件聚导航27 分钟前
马年、我用AI写了个“打工了马” 小程序
人工智能·ui·微信小程序
陈天伟教授1 小时前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪2 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06162 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor2 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES2 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67892 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者2 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he2 小时前
esp32 arduino环境的搭建
人工智能